
CECS 528, Exam 2, Yellow, Fall 2023, Dr. Ebert

NONOTES, BOOKS, ELECTRONIC DEVICES, OR INTERPERSONAL COMMUNICATION
ALLOWED. Submit AT MOST SIX solutions. Make sure your name and SID are on each answer
sheet and please USE BOTH SIDES of each answer sheet to save paper.

Problems (25 Points Each)

1. Answer the following with regards to a correctness-proof outline for the Task Selection algorithm
(TSA). Note: correctly solving this problem counts for passing LO5.

(a) Let T = t1, . . . , tm be the set of non-overlapping tasks selected by TSA and sorted by
finish time, i.e. f(ti) < f(ti+1) for all i = 1, . . . ,m − 1. Let Topt be an optimal set of
tasks and assume that, for some k ≥ 1, t1, . . . , tk−1 ∈ Topt, but tk ̸∈ Topt. Explain why
there must be at least one task t′ ∈ Topt that overlaps with tk. Hint: “Because if there

was no such task . . .”. (7 pts)

(b) Explain why there is at most one task t′ ∈ Topt that overlaps with tk. Hint: assume there

are two overlapping tasks, t′ and t′′, and explain why this creates a contradiction. (10 pts)

(c) Thus, we can define a new optimal set of tasks T̂opt = Topt − {t′} + {tk} that contains
t1, . . . , tk. Continuing in this manner, we may obtain an optimal set of tasks Topt for
which T ⊆ Topt. Moreover, we also have Topt ⊆ T , since there is no way of add another
task to T that does not overlap with one of T ’s tasks. For example, explain why it would
be impossible for Sopt to possess a task not in S and whose finish time occurs before the

start time of any task in S. (8 pts)

2. Do the following. Note: correctly solving this problem counts for passing LO7.

(a) The dynamic-programming algorithm that solves the Runaway Traveling Salesperson

optimization problem (Exercise 30 from the Dynamic Programming Lecture) defines a
recurrence for the function mc(i, A). In words, what does mc(i, A) equal? Hint: do not
write the recurrence (see Part b). Hint: we call it “Runaway TSP” because the salesperson
does not return home. (5 pts)

(b) Provide the dynamic-programming recurrence for mc(i, A). (5 pts)

(c) Apply the recurrence from Part b to the graph below in order to calculate mc(1, {2, 3, 4})
Show all the necessary computations and use the solutions to compute an optimal path
for the salesperson. (15 pts)

1 2

3 4

43

19

45

17

46

22

1

3. Part a refers to the original 2SAT algorithm that makes oracle queries, while Part b refers to
the improved 2SAT algorithm. Do the following. Note: correctly solving this problem counts
for passing LO8.

(a) Suppose you have been given an unsatisfiable instance C of 2SAT that consists of 336
variables and 612 binary clauses. If you apply the original 2SAT algorithm to C, what is
the worst case number of oracle queries that will have be made before concluding that C
is unsatisfiable? Explain. (8 pts)

(b) Consider the 2SAT instance

C = {(x1, x4), (x1, x5), (x2, x3), (x2, x4), (x2, x6), (x3, x4), (x3, x6), (x4, x5), (x4, x5)}.

Draw the implication graph GC. (5 pts)

(c) For the 2SAT instance of part b, find a literal l for which i) Rl is an inconsistent reachability
set, ii) Rl is a consistent reachability set, and iii) αRl

satisfies all the clauses of C. For full
credit clearly state the literal l you have chosen and verify that each of the three properties
are satisfied. (12 pts)

4. Consider the following greedy algorithm for finding a minimum spanning tree within a connected
weighted graph G = (V,E). Sort the edges by decreasing order of weight. For each edge e in
the sorted order, remove e from G if G remains connected after e has been removed. Otherwise,
keep e in G. Claim: once G has only |V | − 1 = n− 1 edges remaining, then it will represent a
minimum spanning tree. The following is a proof outline of this fact.

(a) Let R = e1, . . . , er be the r edges that were removed by the algorithm and in the order that
they were removed. Let Ropt be an optimal set of removed edges. In other words, E−Ropt
yields an mst. Let k be the least index for which ek ̸∈ Ropt, i.e. e1, . . . , ek−1 ∈ Ropt, but
not ek. Consider the set Ropt + ek, where we’ve removed ek from the mst and added it
to Ropt, which results in the mst being broken into two disconnected subgraphs. Explain

why there must be at least one edge e ∈ Ropt such that, i) e ̸= ei for each i = 1, . . . , k−1,

and ii) if we remove e from Ropt and add it back to G, then G will once again be an mst.

(10 pts)

(b) Moreover, explain why the edge e ∈ Ropt, whose existence we’ve established from part a,

must come after ek in the sorted order. (10 pts)

(c) Finally, explain why E −Ropt + ek − e is also an mst. (5 pts)

5. Consider the problem of counting the number of times a bit string u appears in a bit string v,
where we assume u’s bits do not have to appear consecutively. For example, if u = 011 and
v = 001011, then u appears seven times in v at the following index locations:

(135), (136), (156), (235), (236), (256), and (456).

Let N(i, j) denote the number of times u-prefix u1 · · ·ui appears in v-prefix v1 · · · vj. We assume
that N(0, j) = N(i, 0) = 0.

(a) Provide a dynamic-programming recurrence for N(i, j). Hint: an appearance of the u-
prefix in the v-prefix may or may not make use of bit j of the v-prefix. (18 pts)

2

(b) Apply your recurrence to the problem instance u = 101 and v = 1101011. Provide the
matrix of subproblem solutions. (7 pts)

6. Prove that a tree with n vertices has exactly n − 1 edges. Hint: you may assume that every
tree has at least one degree-1 vertex. (25 pts)

LO Makeup Problems (0 Points Each)

LO1. Solve the following problems.

(a) Compute the multiplicative inverse of 28 modulo 87.

(b) For the Strassen-Solovay primality test, verify that a = 2 an accomplice to n = 5 being a
prime number. Show all work.

LO2. Solve the following problems.

(a) Use the Master Theorem to determine the growth of T (n) if it satisfies the recurrence
T (n) = 5T (n/4) + n log4 n. Defend your answer.

(b) Use the substitution method to prove that, if T (n) satisfies

T (n) = 4T (n/2) + n log n,

Then T (n) = Ω(n2).

LO3. Solve the following problems.

(a) Consider the following algorithm called multiply for multiplying two n-bit binary numbers
x and y. Assuming n is even, let xL and xR be the leftmost n/2 and rightmost n/2 bits
of x respectively. Define yL and yR similarly. Let P1 be the result of calling multiply

on inputs xL and yL, P2 be the result of calling multiply on inputs xR and yR, and P3

the result of calling multiply on inputs xL + xR and yL + yR. Then return the value
P1 × 2n + (P3 − P1 − P2)× 2n/2 + P2. Explain in detail why the algorithm’s running time
satisfies T (n) = 3T (n/2) + n.

(b) Using the multiply algorithm from part a, and for the two binary integers x = 10100101
and y = 11110000, determine the values of P1, P2, and P3 at the root level of recursion,
and verify that xy = P1 × 2n +(P3 −P1 −P2)× 2n/2 +P2. Hint: you may evaluate P1, P2,
and P3 non-recursively using base-10.

LO4. Answer/solve the following.

(a) The FFT algorithm owes its existence to what two properties that are possessed by the
nth roots of unity when n is even?

(b) Compute DFT−1
4 (7, 3,−2, 5) using the IFFT algorithm. Show the solution to each of the

seven subproblem instances and, for each one, clearly represent it using DFT−1 notation
and apply the formula for computing it. Show all work.

3

LO6. The tree below shows the state of the binary min-heap at the beginning of some round of Prim’s
algorithm, applied to some weighted graph G. If G has edges

(b, c, 3), (c, e, 7), (c, f, 3), (c, g, 6), (c, p, 2),

then draw a plausible state of the heap at the end of the round.

c/3

d/6

a/9 f/11

g/4

m/5 p/8

4

Solutions to 25-Point Problems

1. Answer the following with regards to a correctness-proof outline for the Task Selection algorithm
(TSA). Note: correctly solving this problem counts for passing LO5.

(a) Let T = t1, . . . , tm be the set of non-overlapping tasks selected by TSA and sorted by
finish time, i.e. f(ti) < f(ti+1) for all i = 1, . . . ,m − 1. Let Topt be an optimal set of
tasks and assume that, for some k ≥ 1, t1, . . . , tk−1 ∈ Topt, but tk ̸∈ Topt. Explain why
there must be at least one task t′ ∈ Topt that overlaps with tk. Hint: “Because if there

was no such task . . .”. (7 pts)

Solution. Because if there was no such task, then one could add tk to Topt and obtain a
better solution, which contradicts Topt being optimal.

(b) Explain why there is at most one task t′ ∈ Topt that overlaps with tk. Hint: assume there

are two overlapping tasks, t′ and t′′, and explain why this creates a contradiction. (10 pts)

Solution. If two tasks t′ and t′′ from Topt overlapped with tk, then one of the two, say t′

would have a finish time that comes before the finish time of tk (why ?). Moreover, since
tk−1 ∈ Topt, t

′ would start at or after tk−1. Thus, in round k the algorithm would have
selected t′ instead of tk.

(c) Thus, we can define a new optimal set of tasks T̂opt = Topt − {t′} + {tk} that contains
t1, . . . , tk. Continuing in this manner, we may obtain an optimal set of tasks Topt for
which T ⊆ Topt. Moreover, we also have Topt ⊆ T , since there is no way of add another
task to T that does not overlap with one of T ’s tasks. For example, explain why it would
be impossible for Sopt to possess a task not in S and whose finish time occurs before the

start time of any task in S. (8 pts)

Solution. The first task t1 selected by the TSA algorithm is the task that finishes the
earliest. Thus, there cannot be a task that starts before t1.

2. Do the following. Note: correctly solving this problem counts for passing LO7.

(a) The dynamic-programming algorithm that solves the Runaway Traveling Salesperson

optimization problem (Exercise 30 from the Dynamic Programming Lecture) defines a
recurrence for the function mc(i, A). In words, what does mc(i, A) equal? Hint: do not
write the recurrence (see Part b). Hint: we call it “Runaway TSP” because the salesperson
does not return home. (5 pts)

Solution. mc(i, A) equals the cost of the minimum-cost simple path that starts at i and
visits every vertex in A.

(b) Provide the dynamic-programming recurrence for mc(i, A). (5 pts)

Solution. We have

5

mc(i, A) =


0 if A = ∅
Cij if A = {j}
min
j∈A

(Cij +mc(j, A− {j}) otherwise

(c) Apply the recurrence from Part b to the graph below in order to calculate mc(1, {2, 3, 4})
Show all the necessary computations and use the solutions to compute an optimal path
for the salesperson. (15 pts)

1 2

3 4

43

19

45

17

46

22

Solution. Start with mc(1, {2, 3, 4}) and proceed to compute other mc values as needed.

mc(1, {2, 3, 4}) = min(17 + mc(2, {3, 4}), 43 + mc(3, {2, 4}), 19 + mc(4, {2, 3})).

mc(2, {3, 4}) = min(46 + mc(3, {4}), 45 + mc(4, {3})) = min(46 + 22, 45 + 22) = 67.

mc(3, {2, 4}) = min(46 + mc(2, {4}), 22 + mc(4, {2})) = min(46 + 45, 22 + 45) = 67.

mc(4, {2, 3}) = min(45 + mc(2, {3}), 22 + mc(3, {2})) = min(45 + 46, 22 + 46) = 68.

Therefore,

mc(1, {2, 3, 4}) = min(17 + mc(2, {3, 4}), 43 + mc(3, {2, 4}), 19 + mc(4, {2, 3})) =

min(17 + 67, 43 + 67, 19 + 68) = 84.

This gives the optimal path P = 1, 2, 4, 3.

3. Part a refers to the original 2SAT algorithm that makes oracle queries, while Part b refers to
the improved 2SAT algorithm. Do the following. Note: correctly solving this problem counts
for passing LO8.

(a) Suppose you have been given an unsatisfiable instance C of 2SAT that consists of 336
variables and 612 binary clauses. If you apply the original 2SAT algorithm to C, what is
the worst case number of oracle queries that will have be made before concluding that C
is unsatisfiable? Explain. (8 pts)

Solution. Worst case is that 2×336 = 672 queries have to be made. This would occur in
the case that the only variable that is responsible for an inconsistent is the 336th variable
checked.

6

(b) Consider the 2SAT instance

C = {(x1, x4), (x1, x5), (x2, x3), (x2, x4), (x2, x6), (x3, x4), (x3, x6), (x4, x5), (x4, x5)}.

Draw the implication graph GC. (5 pts)

Solution. Please see

https://home.csulb.edu/~tebert/teaching/fall22/528/assess/

LO9-11-09-2022/LO9-11-09-2022-Solution-LO9.pdf

(c) For the 2SAT instance of part b, find a literal l for which i) Rl is an inconsistent reachability
set, ii) Rl is a consistent reachability set, and iii) αRl

satisfies all the clauses of C. For full
credit clearly state the literal l you have chosen and verify that each of the three properties
are satisfied. (12 pts)

Solution. Please see

https://home.csulb.edu/~tebert/teaching/fall22/528/assess/

LO9-11-09-2022/LO9-11-09-2022-Solution-LO9.pdf

4. Consider the following greedy algorithm for finding a minimum spanning tree within a connected
weighted graph G = (V,E). Sort the edges by decreasing order of weight. For each edge e in
the sorted order, remove e from G if G remains connected after e has been removed. Otherwise,
keep e in G. Claim: once G has only |V | − 1 = n− 1 edges remaining, then it will represent a
minimum spanning tree. The following is a proof outline of this fact.

(a) Let R = e1, . . . , er be the r edges that were removed by the algorithm and in the order
that they were removed. Let Ropt be an optimal set of removed edges. In other words,
Topt = E − Ropt yields an mst. Let k be the least index for which ek ̸∈ Ropt, i.e.
e1, . . . , ek−1 ∈ Ropt, but not ek. Consider the set Ropt + ek, where we’ve removed ek from
the mst and added it to Ropt, which results in the mst being broken into two disconnected

subgraphs. Explain why there must be at least one edge e ∈ Ropt such that, i) e ̸= ei for

each i = 1, . . . , k, and ii) if we remove e from Ropt and add it back to G, then G will once

again be an mst. (10 pts)

Solution. Let A and B denote the two trees of the forest that forms when ek is removed
from the mst Topt. When the algorithm removed ek, G remained connected. Therefore,
at that time there must have been some edge e in G for which e was incident with a
vertex of A and with a vertex of B. Otherwise, removal of ek would have disconnected G.
Moreover, this edge e ∈ Ropt since otherwise the mst would have a cycle that includes
both ek and e. Finally e ̸= ei for each i = 1, . . . , k since e remained in G after each ei was
removed.

(b) Moreover, explain why the edge e ∈ Ropt, whose existence we’ve established from part a,

must come after ek in the sorted order. (10 pts)

Solution. As was mentioned in part a, edge e was in G when ek was removed, and thus
it must come after ek in the sorted order. Otherwise, it would have been successfully

7

removed (since ek would still be in G) and would not have still been in G when ek was
removed.

(c) Finally, explain why E −Ropt + ek − e is also an mst. (5 pts)

Solution. Since e comes after ek in the sorted order, w(e) ≤ w(ek), and replacing ek with
e in the mst results in a tree whose cost is no greater than the original one. Therefore,
the modified tree is also an mst.

5. Consider the problem of counting the number of times a bit string u appears in a bit string v,
where we assume u’s bits do not have to appear consecutively. For example, if u = 011 and
v = 001011, then u appears seven times in v at the following index locations:

(135), (136), (156), (235), (236), (256), and (456).

Let N(i, j) denote the number of times u-prefix u1 · · ·ui appears in v-prefix v1 · · · vj. We assume
that N(0, j) = 0 and N(i, 0) = 0.

(a) Provide a dynamic-programming recurrence for N(i, j). Hint: an appearance of the u-
prefix in the v-prefix may or may not make use of bit j of the v-prefix. (18 pts)

Solution. We have

N(i, j) =


0 if i > j
u[1 : i] = v[1 : j] if i = j∑j

k=1(u[1] = v[k]) if i = 1
N(i, j − 1) if u[i] ̸= v[j]
N(i, j − 1) +N(i− 1, j − 1) if u[i] = v[j]

(b) Apply your recurrence to the problem instance u = 101 and v = 1101011. Provide the
matrix of subproblem solutions. (7 pts)

Solution.
i/j 1 1 0 1 0 1 1

1 1 2 2 3 3 4 5
0 0 0 2 2 5 5 5
1 0 0 0 2 2 7 12

6. Prove that a tree with n vertices has exactly n − 1 edges. Hint: you may assume that every
tree has at least one degree-1 vertex. (25 pts)

Solution. See solution to Exercise 2 of the Greedy Graph Algorithms lecture.

Solutions to LO Makeup Problems

LO1. Solve the following problems.

8

(a) Compute the multiplicative inverse of 28 modulo 87.

Solution. 28 is its own inverse modulo 87.

(b) For the Strassen-Solovay primality test, verify that a = 2 an accomplice to n = 5 being a
prime number. Show all work.

Solution. 2(5−1)/2 = 22 ≡ 4 ≡ −1 mod 5. Also
(
2
5

)
= −1 since 5 ≡ −3 mod 8.

LO2. Solve the following problems.

(a) Use the Master Theorem to determine the growth of T (n) if it satisfies the recurrence
T (n) = 5T (n/4) + n log4 n. Defend your answer.

Solution. Since log4 5 > 1, n log4 n = O(nlog4 5−ϵ) for ϵ sufficiently small, and it follows
by Case 1 of the Master Theorem that T (n) = Θ(nlog4 5).

(b) Use the substitution method to prove that, if T (n) satisfies

T (n) = 4T (n/2) + n log n,

Then T (n) = Ω(n2).

Solution. Inductive Assumption: T (k) ≥ Ck2 for all k < n. Show T (n) ≥ Cn2. We have

T (n) = 4T (n/2) + n log n ≥ 4C(
n

2
)2 + n log n = Cn2 + n log n ≥ Cn2 ⇐⇒ n log n ≥ 0

which is true for n ≥ 1. Therefore, T (n) = Ω(n2).

LO3. Solve the following problems.

(a) Consider the following algorithm called multiply for multiplying two n-bit binary numbers
x and y. Assuming n is even, let xL and xR be the leftmost n/2 and rightmost n/2 bits
of x respectively. Define yL and yR similarly. Let P1 be the result of calling multiply

on inputs xL and yL, P2 be the result of calling multiply on inputs xR and yR, and P3

the result of calling multiply on inputs xL + xR and yL + yR. Then return the value
P1 × 2n + (P3 − P1 − P2)× 2n/2 + P2. Explain in detail why the algorithm’s running time
satisfies T (n) = 3T (n/2) + n.

Solution. The divide-and-conquer algorithm creates three subproblems, each with size
n/2. Moreover, it requires O(n) steps to form the instances of P3 and O(n) steps to
compute the expression P1 × 2n + (P3 − P1 − P2)× 2n/2 + P2. This is because multiplying
by, e.g., 2n requires shifting the bits of P1 to the left by n places which takes O(n) steps.
The same is true for multiplying with 2n/2. Finally, the additions required to get the final
answer all require O(n) steps since the numbers being added all have O(n) bits.

9

(b) Using the multiply algorithm from part a, and for the two binary integers x = 10100101
and y = 11110000, determine the values of P1, P2, and P3 at the root level of recursion,
and verify that xy = P1 × 2n +(P3 −P1 −P2)× 2n/2 +P2. Hint: you may evaluate P1, P2,
and P3 non-recursively using base-10.

Solution. xL = 10, xR = 5, yL = 15, yR = 0, P1 = 150, P2 = 0, P3 = 225, xy = 39, 600.

LO4. Answer/solve the following.

(a) The FFT algorithm owes its existence to what two properties that are possessed by the
nth roots of unity when n is even?

Solution. The squares of the nth roots of unity give the n/2 roots of unity, and the nth
roots of unity come in additive inverse pairs so that their squares produce only n/2 values
(which happen to be the n/2 roots of unity).

(b) Compute DFT−1
4 (7, 3,−2, 5) using the IFFT algorithm. Show the solution to each of the

seven subproblem instances and, for each one, clearly represent it using DFT−1 notation
and apply the formula for computing it. Show all work.

Solution. We have

DFT−1
1 (7) = 7 and DFT−1

1 (−2) = −2.

DFT−1
2 (7,−2) = 1/2((7, 7) + (1,−1)⊙ (−2,−2)) = (5/2, 9/2).

DFT−1
1 (3) = 3 and DFT−1

1 (−5) = −5.

DFT−1
2 (3,−5) = 1/2((3, 3) + (1,−1)⊙ (−5,−5)) = (−1, 4).

DFT−1
4 (7, 3,−2,−5) = 1/2((5/2, 9/2, 5/2, 9/2) + (1,−i,−1, i)⊙ (−1, 4,−1, 4)) =

1

4
(3, 9− 8i, 7, 9 + 8i).

LO6. The tree below shows the state of the binary min-heap at the beginning of some round of Prim’s
algorithm, applied to some weighted graph G. If G has edges

(b, c, 3), (c, e, 7), (c, f, 3), (c, g, 6), (c, p, 2),

then draw a plausible state of the heap at the end of the round.

10

c/3

d/6

a/9 f/11

g/4

m/5 p/8

Solution.

p/2

g/4

a/9 d/6

f/3

m/5

11

