Directions: show all work.

Problem

LO4. Answer the following.

(a) The dynamic-programming algorithm that solves the 0-1 Knapsack optimization problem defines a recurrence for the function p(i, c). In words, what does p(i, c) equal? Hint: do not write the recurrence (see Part b). (5 pts)

See Lecture Notes

(b) Provide the dynamic-programming recurrence for p(i, c). (8 pts)

See Lecture Motes

(c) Apply the recurrence from Part b to a knapsack having capacity M = 10 and items

\mathbf{item}	weight	profit
1	5	30
2	4	30
3	1	20
4	4	40
5	5	30
6	5	60

20 + 40 + 60 = 120

Show the matrix of subproblem solutions and use it to provide an optimal set of items. (12 pts)

A1. Given recurrence T(n) = aT(n/b) + f(n), for Case 3 of the Master Theorem to apply, one requirement that we have mostly ignored (because it's always true when f is comprised of a power function times a log power function) is that there must exist a constant c < 1 for which

$$af(n/b) \le cf(n).$$

Determine a value for c < 1 that satisfies the above inequality in the case that $f(n) = n^3 \log n$, a = 4, and b = 2. Show all work and justify your answer. (35 pts)

$$4\left(\frac{n}{2}\right)^{3}\log(\frac{n}{2}) \leq Cn^{3}\log(\frac{n}{2})$$

$$\frac{n^{3}(\log n - 1)}{2} \leq Cn^{3}\log(\frac{n}{2})$$

$$\frac{1}{2}\left(1 - \frac{1}{\log n}\right) \leq C.$$

$$\frac{1}{2}\left(1 - \frac{1}{\log n}\right) \leq C.$$

$$\frac{1}{2} \int_{0}^{\infty} C = \frac{1}{2} \quad \text{satisfies the condition.}$$

A2. Provide a permutation of the numbers 1-9 so that, when sorted by Quicksort using median-ofthree heuristic, the a_{right} subarray always has one element in rounds 1,2, and 3. Verify that your array is correct by demonstrating Quicksort for each of the three rounds. (35 pts)

Consider the array
$$a = 125793648$$

Round 1: median (1, 9, 18) = 8
 1257943640
 125743640
 1257436
 1257436
 1257436
 1257436
 1257436
 1257436
 1257436
 1257436
 1257436
 1257436
 1257436
 1257436
 1257436
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534
 12534

R