CECS 329, Homework Assignment 1, Fall 2025, Dr. Ebert

Directions: Please review the Homework section on pages 5 and 6 of the syllabus including a list of all rules and guidelines for writing and submitting solutions.

Due Date: Saturday September 6th as a PDF file upload to the HW1 Canvas dropbox.

Problem

This problem is a spinoff of Additional Exercise A from the Turing Reducibility lecture. That exercise indicates that the multiplication algorithm provided in Example 3.1 is very inefficient in that the number of steps it requires for two unsigned n-bit integer inputs is $\Omega(2^n)$, and thus has exponential growth. The objective of this problem is to provide a more efficient multiplication algorithm. The pseudocode that you write may only use loops, conditional statements, variable assignments, queries to an add oracle, and logical operations (including bit shift and other bitwise operations). To receive full credit, your algorithm must make nontrival use of the add oracle. In other words, it should not solely rely on logical operations. It should also be as efficient as possible.

- 1. Write a short paragraph that describes how your algorithm works. (15 pts)
- 2. Provide pseudocode for your algorithm in a mannner similar to what was provided in Example 3.1. (15 pts)
- 3. Use big-O notation to provide an upper bound on the number of steps required by your algorithm, assuming that inputs a and b are two unsigned n-bit integers. Also, assume that the execution of a logic operation counts as one step, as does each query to the add oracle. (10 pts)