CECS 329, Homework Assignment 3, Fall 2025, Dr. Ebert

Directions: Please review the Homework section on pages 5 and 6 of the syllabus including a list of all rules and guidelines for writing and submitting solutions.

Due Date: Saturday October 11th as a single PDF file upload to the HW3 Canvas dropbox.

Problems

1. Given 3SAT instance

$$C = \{(x_1, x_2, x_3), (\overline{x}_2, x_3, \overline{x}_4), (x_1, x_2, \overline{x}_4), (\overline{x}_1, \overline{x}_3, \overline{x}_4), (\overline{x}_1, x_2, x_4), (\overline{x}_2, x_3, x_4), (x_1, \overline{x}_3, x_4), (\overline{x}_2, \overline{x}_3, x_4), (\overline{x}_2, \overline{x}_3, \overline{x}_4)\},$$

answer the following questions.

- a. For the mapping reduction f from 3SAT to Clique presented in lecture, if $f(\mathcal{C}) = (G, k)$, then how many vertices does G have? How many edges does it have? Explain and show work. Hint: use the complement rule of counting to count the number of edges. What is the value of k? (10 pts)
- b. Does G have a k-clique? If yes, provide the vertices of the clique (for clarity make sure to indicate the vertex group of each vertex in the clique). In any case, defend your answer. (10 pts)
- c. Now suppose G is in turn mapped to the instance (\overline{G}, k) of Independent Set using the complement reduction provided in the Mapping Reducibility lecture. How many vertices and edges does \overline{G} have? Explain. (5 pts)
- 2. Recall the mapping reduction f from 3SAT to Subset Sum presented in lecture and Suppose we apply it to the 3SAT instance from Problem 1 to get $f(\mathcal{C}) = (S, t)$.
 - a. How many members are in S? What is the largest number in S? What is the value of t? Justify your answer. (10 pts)
 - b. Is there a subset A of S that sums to t? Justify your answer. In case A exists, list all of its members (hint: list each member based on its assigned name from the reduction. Do not provide its decimal form). Explain how you obtained this subset. (10 pts)
 - c. Now suppose (S,t) is in turn mapped to the instance S' of Set Partition using the mapping reduction provided in the Mapping Reducibility lecture. From this reduction, we know that $S' = S \cup \{J\}$. Provide the value of J in decimal form. Show work. (10 pts)