
CECS 329, Homework Assignment 5, Fall 2025, Dr. Ebert

Directions: Please review the Homework section on page 6 of the syllabus including a list
of all rules and guidelines for writing and submitting solutions.

Due Date: Monday, November 17th as a PDF-file upload to the HW4 Canvas dropbox.

URM Programs

An Unlimited Register Machine (URM) is a computing device that consists of an unlimited list
of registers R1, R2, . . ., where each register is capable of holding any natural number n ≥ 0, regardless
of how large. The following is a recursive definition for what it means to be a URM program.

Atomic Program Each of the following instructions is considered a (single-instruction) URM program.
Note: indices i and j are both positive integers.

1. z(i). Assigns register i the value of 0: Ri ← 0, and is then terminated.

2. s(i). Adds 1 to register i: Ri ← Ri + 1, and is then terminated.

3. c(i, j). Copies the contents of register i to register j: Rj ← Ri, and is then terminated.

4. end. Has the global effect of terminating all programs that are currently being executed.

Compound Program via Concatenation If P and Q are programs, then so is PQ, i.e. the
concatenation of P followed by Q.

Compound Program via if If P is a program, then if(i, j)[P ] is also a program. To execute this
program, first compare the values stored in Ri and Rj. If Ri = Rj, then execute P . Otherwise
terminate program if(i, j)[P ].

Compound Program via while If P is a program, then while(i, j)[P ] is also a program. To
execute this program, repeatedly do the following until while(i, j)[P ] has been terminated.
Compare the values stored in Ri and Rj. If Ri ̸= Rj, then execute P . Otherwise, in case
Ri = Rj, terminate program while(i, j)[P ].

To perform a computation with a URM program P , the program inputs are successively placed in R1

through Rm, where m ≥ 0 is the number of inputs. All other registers are automatically initialized
to 0. The output of the computation is equal the value stored in R1 after P has been terminated.

1



The following is a URM program for computing ⌊n/2⌋ where n is the sole input. The program is
written in vertical indentation form for the sake of readability.

while(1, 2)

s(2)

if(1, 2) //n must be odd.

c(3, 1) //copy output ⌊n/2⌋ to output register R1

end

s(3) //add 1 to the output/quotient

s(2)

if(1, 2) //n must be even.

c(3, 1) //copy output n/2 to R1

end

Finally, we may also view a URM program as a word over the alphabet

Σ = {z, s, c, 0, 1, . . . , 9, end,while, if, (, ), [, ], “, ”}.

For example, the word form of the above program is the word

while(1, 2)[s(2), if(1, 2)[c(3, 1), end], s(3), s(2), if(1, 2)[c(3, 1), end]].

Problems

1. Use vertical indentation form to describe a URM program that on inputs x and y, outputs xy.
(10 pts)

2. Provide the word form of your program from part a. (5 pts)

3. Provide the rules for a context-free grammar that describes the set of all URM programs,
where each program is viewed as a word (in word form) over Σ. Use capital letters for all
variables and indicate the start variable. You may assume that any nonempty sequence
of digits represents a valid register number, so long as it has at least one nonzero digit. (20 pts)

4. Use your grammar to provide a left-most derivation of the program

while(2,3)[s(1),s(3)]

(10 pts)

2


