Turing Reducibility

Last Updated: August 23rd, 2025

1 Introduction

A common technique in everyday problem solving is to leverage the solution to one problem in order
to solve another. For example, consider our friend Sam who must solve the problem of earning enough
money to help support his way through college. One possible solution that Sam has considered is to
work part-time delivering food for DoorDash. This solution would leverage the fact that he’s already
solved the problem of driving a vehicle from one city location to another. Sam will likely have to
solve tens of transport problems during a single work shift. In computer science, when an algorithm
solves an instance of problem A by making one or more invocations to another algorithm that solves
some problem B, then we say that A is Turing reducible to B, named after the British mathematician
Alan Turing (1912-1954) who provided one of the earliest known theoretical models of computation
that is functionally equivalent to the computers we use today (so long as our computers are idealized
as having an infinite supply of memory). In this lecture we take a closer look at Turing reducibility
and how it can be used as a means for devising algorithms.



2 Computational Problems

Informally, when we think of a problem, we think of a situation that needs to be resolved (i.e. solved).
Moreover, in computer science we think of a computing problem as having the following properties.

Definition 2.1. A computing problem is a collection of situations that share a common theme.

e Each situation is referred to as a problem instance, and represents a concrete example of the
general problem.

e Fach problem instance can be represented by a unique word over some alphabet, meaning that
no two instances map to the same word. The word may then be encoded into a binary word
so that the problem instance can be stored in computer memory.
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Three types of problems

Decision The solution to a problem instance is either Yes or No, equivalently True (1) or False
(0). An instance x for which the solution is 1 (respectively, 0) is called a positive instance
(respectively, negative instance).

Optimization The solution to a problem instance x is a number that represents the greatest (or
least) quantity of some entity that is associated with x

Miscellaneous Any computation problem that is neither a decision nor an optimization problem
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Example 2.2. For each of the following problems, determine if it is a decision, optimization, or
miscellaneious problem.

a. An instance of the Prime problem is a natural number n > 0, and the problem is to decide if

n is a prime number, meaning that its only natural divisors are 1 and n. c') e C \ S\ 5 T\

b. An instance of the Maximum Subsequence Sum (MSS) is a sequence (array) a of integers. The
problem is to determine the greatest sum that can be made by any subsequence of a. For
example, determine the maximum subsequence sum for any subsequence of

Og i 26 o1 3,—4(2.5)~2, —4(0.2,3)—2, 1.
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c. An instance of Sort is an array a of integers. The problem is to produce another array b whose
members are the members of a, but in sorted order.  R/\
Misce\anre WS

d. An instance of Fallj ormula F'. Is there an assignment that can be made to
the variables of F{'so that F' evaluates to 07 For example, given the logical formula F(x,y) =
x — (y — x), can x and y be assigned Boolean Values that force F' to evaluate to 07
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3 Turing Reducibility

An important tool for desigining an algorithm to solve a problem A is to leverage an existing algorithm
that solves another problem B by calling that algorithm one or more times for different instances of
B in order to solve a single instance of A.

Example 3.1. Consider the problem of multiplying two positive numbers, say 5 and 3. Marcia is
still learning the multiplication table, but she performs well in addition, and also knows that 5 x 3
means (5 + 5) + 5. Thus, she first solves the addition problem 5 + 5 and gets the answer 10. She
then solves the final addition problem, 10 + 5 to obtain the answer of 15.

The following function returns the product of its two inputs by making calls to an add function that
returns the sum of its two inputs. It essentially generalizes Marcia’s solving method.

unsigned int multiply(unsigned int a, unsigned int b)

{
int sum = O;
int 1i;
for(i=1; i <= b; i = add(i,1))
sum = add(sum,a);
return sum;
+



In Example 3.1, Marcia reduced the Multiply problem to the Add problem. In other words, she
devised an algorithm for multiplying two numbers that relies on solving one or more addition
problems. Moreover, whenever the answer to an instance of Add is being sought to help solve an
instance of Multiply, then we say that Multiply is making a query to the Add-oracle, i.e., an
entity that is capable of providing solutions to instances of Add. The answer provided by the oracle
is called a query answer. Note that the algorithm that is making queries to an oracle does not need
to know how the oracle is providing its answers. In case of the multiply function in Example 3.1,
the function just assumes that each add query will be correctly answered with no concern about how
the answer is obtained. In fact, the oracle may provide answers to instances of a problem for which
it is impossible to devise an algorithm for solving it.

Definition 3.2. Problem A is Turing reducible to problem B, denoted , iff there is some
algorithm that can solve any instance x of A, and is allowed to make zero or more queries to a
B-oracle, i.e. an oracle that provides solutions to instances of B.

Note that <7 is a relation over the set of computing problems, in that, for any two problems A and
B, A <7 B evaluates to 0 or 1.

Definition 3.3. If A < B via an algorithm whose running time O(n*), for some k > 0, then A

is said to be polynomial-time Turing reducible to B, denoted A gl’} B. Note: this definition
assumes that each B-query is answered in one step.
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Example 3.4. s it always true thator any problem A? In other words, is <7 a reflexive
relation? If A < B, is it always true that B <7 A? In other words, is < a symmetric relation?
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4 Sets and Graphs Review

Our next example of Turing reducibility involves Turing reducing a logic problem to a graph problem.
We now review some basic set and graph definitions that will be used throughout the remainder of
the course.

4.1 Sets

Definition 4.1. A set represents a collection of items, where each item is called a member or
element of the set.

List Notation the most common way to represent a set where the set members are listed one-by-
one, and the list is delimited by braces. For example,

{2,3,5,7,11}
R
uses list notation to describe the set consisting of all prime numbers that do not exceed 11. Note

that the order in which the members are listed does not matter. Indeed the sets {2,3,5,7,11}
and {3,11,5,2,7} are identical. Also, each member occurs only once in the set, meaning that
M is the same set as {1,2,3}. Note: a multiset is a set for which each member
may occur more than once, but we will have little if any use for them in this course.

Informal List Notation uses ellipsis ... to indicate that a pattern is to be continued in the list,

-—

either indefinitely or up to some value.

Common Numerical Sets Natural Numbers N = {0,1,2,...} ng' — SCAV
Integers 1={0,+1,+2,...} ={...,—-2,-1,0,1,2,...} Ogbe _\‘ g
e — e — —/\/\—_\l
Rational Numbers or Fracations Q = {p/q | p,¢ € 1A q # 0} ¢ Q Q’\V

Empty Set the set having no members and denoted by (.

Membership Symbol = € A indicates that item x is a member of set A, while x ¢ A means that
x is not a member of A. A —_— ’b )

Containment Symbol A C B means that A is a subset of B. In other words, every member of

A is also a member of B. Note: trivially, § C B for every set B, but A C @ is only true when
A=10.

Proper Containment Symbol means that A is a subset of B but that there is some
member of B that is not a member of A. In this case we say that A is a proper subset of B.

Set Equality A = B iff A C B and B C A are both true statements.

Set Cardinality |A| denotes the number of items of A. We also refer to |A| as the size of A. Note:
IN| = |I] = |Q| = oo since the members of all three sets can be placed in an infinite list.
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Example 4.2. The following are all true statements.

7RG
The following are all true statements.
L 61€{2,3,57,11,...,97 1¥v&
b.39¢{2,35711,....97) |l
{3 e (0 fB) L2k 23k (23 True
d. 3¢ (0,41}, {3}. {12}, {2.3}, {1.2,3}} "\ ©
{7,23,59} € (2,3,5,7, 11,97} and [7.23,50) € {2,3,5,7,11,....,97) TVl

Q

o

@

L (3} 24001 31 {1,223} (1230 B ¢\ Tvue Bang
g. |®| =0 and |{‘®_7 E]’) @vﬂﬁ}’ @}7 {17273}” =6
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4.2 Graphs

A Graph is a pair of sets V and E, where

C— o

Graph G = (V,E) V is a set of vertices, also called nodes, while F is a set whose members are
pairs of vertices and are called edges. Each edge may be written as a tuple of the form (u,v),

where u, v }

Adjacency and Incidence If e = (u,v) is an edge, then we say that u is adjacent to v, and that
e is incident with v and v.

e

Order |V| = n is called the order of G.

Size |E| = m is called the size of G.

Path A path P of length k£ in a graph is a sequence of vertices P = wvg,v1,..., 0, such that
(vi,vi11) € E for every 0 <i < k — 1.

Simple Path P = vy, vy, ..., v, where the vertices vy, v, ..., v, are all distinct.

Path Length represents the number of edges that are traversed when following the path. If P =
Vo, V1, - - - , U, then the length of P equals k and we write |P| = k.

Cycle A cycle is a path that begins and ends at the same vertex and has a length of at least 3.

Degree The degree of a vertex v, denoted as deg(v), equals the number of edges that are incident
with v. Note: loop edges are counted twice.

Example 4.3. Let G = (V, E), where

V ={SD,SB, SF,LA,SJ,0AK}

—_—

is a set of California city abbeviations, and

E ={(SD,LA),(SD,SF), (LA, SB),(LA,SF),(LA,SJ),(LA, OAK), (SB, S.J)}

are edges, each of which represents the existence of one or more flights between two cities that some
airline provides. Figure 1 shows a graphical representation of G. GG has order 6 and size 7.

Figure 2 shows a simple path of length 4. Figure 3 shows a cycle of length 3. Let’s verify the
Handshaking theorem which states that the sum of all vertex degrees equals twice the number of
edges.

deg(SF) + deg(LA) + deg(SD) + deg(OAK) + deg(SJ) + deg(SB) =

245+24+14+24+2=14=2.7=2|E|
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Figure 1: Graphical Representation of G \,\5\% L A

N\

Figure 2: Simple path (in red) P = SF,SD,LLA;SJ,SB of length 4
&_’—_’-\——\/
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LA SJ

Figure 3: Cycle (in red) C' = SF,SD,LA SF of length 3

Definition 4.4. A directed graph G = (V, E) is a graph for which each edge e = (u,v) of G is
oriented so that, when traversing e, v must always come before v. In other words, directed edge e is
like a one-way street where traffic must travel from u to v.

Example 4.5. Directed graphs play an important role in planning and scheduling. The vertices of
the graph below represent different tasks that must be completed for a project. A directed gdes
means that the completion task w is necessary before task v may be started. In what(gfERsE
you complete these tasks in order to complete the project? What is the longest path in

o)

11
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5 The Reachability problem

In the remainder of this lecture we provide two examples of polynomial-time Turing reducibility from
both the 2SAT and Max Flow problems to the Reachability decision problem.

Definition 5.1. An instance of the Reachability problem is a graph G = (V, E) and vertices
u,v € V, and the problem is decide if there is a path in G from u to v.

The Reachability problem is an example of a decision problem, i.e. the solution to each problem
instance is either 0 or 1. A problem instance whose solution is 1 is said to be a positive instance.
Otherwise it is called a negative instance. Any algorithm that solves a decision problem is said to
decide the problem.

The following algorithm decides Reachability and has a linear running time equal to O(m + n),
where m = |E| and n = |V|.

Reachability Algorlthms)( T

Input: G = (V,E),UA,?,GLV/ ;Q__g-\_‘né\' +
Output: true iff there is a path from u to v.

If w = v, then return true.

Initialize FIFO queue @ with w: @ < (u).

Mark u as having been reached.

While Q # ()

Remove vertex w from the front of Q: @ + Q — QI0].
For each edge (w,z) € E

If z is unmarked, then mark z and enter = into Q: @ < Q + (z).
If v is marked, then return true.

Return false.

12
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Theorem 5.2. The Reachability Algorithm is correct and has the stated running time equal to
O(m +n).

Proof. We claim that, for all ¢« > 0, if there is a path from u to x having length ¢, then = gets marked
during the algorithm.

Basis step. Assume i = 0. Then necessarily x = u which gets marked before entering the while
loop.

Inductive step. Assume the claim is true for some ¢ > 0. Consider a path from u to x having
length ¢ + 1. Let w be the vertex that immediately precedes x in the path. Then there is a path
from u to w having length ¢. By the inductive assumption, vertex w gets marked and added to Q.
Thus, there will be a step in the algorithm where w is removed from @ and edge (w,z) € E will be
examined. At this point x gets marked in case it has yet to be marked. O

The above inductive proof shows that, if v is reachable from u, then the algorithm returns true,
since there is a path from u to v. Conversely, we leave it as an exercise to prove that, if a vertex gets
marked during the algorithm, then that vertex must be reachable from w (hint: use induction).

Running Time. To see that the algorithm runs in linear time, notice that the while loop requires
at most n iterations and, assuming an undirected graph, each edge (w,x) in G must be considered
at most twice: once if w is removed from (), and a second time if x is removed from (). Thus, the
total number of steps equals O(2m +n) = O(m + n). O

13



Example 5.3. Show the contents of the queue () during the execution of the above algorithm on
the graph G = (V, E), where
V = {CI’?baC;dae)fagah}

and the edges are given by
E={(a,b),(a,c),(bc), (b d),(b,e),(b,9),(c,9) (c f),

(d, f), (£, 9), (f, h), (9, )}

Decide if h is reachable from a.

14
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6 Boolean Variable Assignments

Before introducing the 2SAT decision problem, we need to understand the concept of a Boolean
variable assignment.

Boolean Variable A variable is said to be Boolean iff its domain equals {0, 1}. We use lowercase
letters, such as x,y, z,x1, T9, . . ., etc., to denote a Boolean variable. ===

Assignment An assignment over a Boolean-variable set V' is a function o : V' — {0,1} that
assigns to each variable x € V' a value in {0,1}. We may represent « using function notation,
or as a labeled tuple.

Example: for the assignment « that assigns 1 to both x; and x5, and 0 to x3, we may use
function notation and write a(z) = 1, a(z2) = 1, and a(x(;) = 0, or we may use tuple notation
and write ——

L $1—1LE2—1I3—0 5

= (1’ 170)7

or

if the associated variables are understood.

(/
Y Not x

Variable Negation If x is a variable, then 7 is called its negation.
W

Example: Suppose assignment « satisfies a(z1) = 0. Then (extending « to include negation
inputs) a(7;) = 1.

Literal A literal is either a variable or the negation of a variable .

Example: 1, x3, T3, are Ty all examples of literals.

——

Consistent A set R of literals is called consistent iff no variable and its negation are both in R.
Otherwise, R is said to be inconsistent.

1S an inconsistent set.

Example: {1, T2, x4, T7,To} is a consistent set, but {x1, ZTe, x4\ T7, x7
/\ \’—\

Induced Assignment If R = {l;,...,[,} is a consistent set of literals, then ag is called the
(partial) assignment induced by R and is defined by a(l;) =1 for all [; € R.

4 ' Xyemj(
Example: the assignment induced b C ons \ S

ar=(r1=1129=0,24 = 1,27 = 0,29 = 0).
~— .~ T

——

15
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7 The 2SAT decision problem

In this section we introduce the 2SAT decision problem and show it is polynomial-time Turing
reducible to Reachability. Afterwards, we improve the algorithm so that it no longer makes explicit
queries to Reachability.

Definition 7.1. A binary disjunctive clause is a Boolean formula of the form
1 Vs,

where [ and [y are literals. The clause evaluates to 1 in case either [; or Iy (or both) is assigned 1.

Definition 7.2. An instance of the 2SAT decision problem consists of a set C of binary disjunctive
clauses. The problem is to decide if there is an assignment « over the variables in C, such that every
clause (I; V l3) in C evaluates to 1 under «. If such an assignment « exists, then it is said to be
a satisfying assignment and we say C is satisfiable. Otherwise, C is said to be unsatisfiable.
Finally, the 2SAT decision problem is the problem of deciding whether a set C of clauses is sastisfiable.

Simplified clause notation. In what follows, we often simplify the clause notation by writing each

clause (I, V l3) as (I3, l2).
A —

16
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Example 7.3. Provide a satisfying assignment for ( \/ \ = )

c = {<x®@, (1 @) 5. @FY, () 70
, AV
(XyV yg
Condunckive ™Normald

Fovm <U\\\t}
O(::-CX\:QD )Xz: O 3X3:O )XL)-:]B
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false or I, must be true. .
@ 2,0 [ Q)\/,Oz ﬂ‘
‘ =

We now demonstrate how to Turing reduce 2SAT to Reachability, meaning that we can solve an
instance of 2SAT by making queries to a Reachability-oracle.

Definition 7.4. Let C be an instance of 2SAT, and defined over the variables z1, xs,...,x,. Then
the implication graph of C is defined as the directed graph G¢ = (V, E), where

V= {xhx?w"axnafhfﬁ---afn}

and each clause (I; V I5) produces the two directed edges (I1,13), (I2,1;) € E.

The idea behind the two edges formed from clause ¢ = (I; V l3) is that ¢ is logically equivalent to
both the implication I; — I, and its contrapositive I, — [;. Thus, for each edge (I1,l3) of G¢, when
l; is assumed true, then [y must also be true. This is so because (I, ls) corresponds with the clause
(Zl V ly) and the truth of [y forces the truth of [y, since, according to the clause, either I; must be

!
O ||
U)o

]
O
l

18
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Example 7.5. Verify that [, V [ is logically equivalent to both Iy = 1y and Iy — 1.

Solution. Sen P e~y oUS T 0\®/€

——

Z]\>/Q2 /Q)/’_\)/Q\

U
C/o\ﬂ/%m? ositve ok
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Example 7.6. Draw the implication graph for the set C of clauses listed in the following table.

Clause | Implication Contrapositive
(fz, .1‘4) Ty —> Ty Ty — To
—
(Tz,fg) Ty — fg T3 — To
(Tg, 1'3) To — T3 Tg — Ty
(372, IL‘3) To — T3 fg — T2
(T2, 4) | T2 — 74 Ty — X2
(l‘l,le) T1 — Ty Tyg — T1

(K s YWD KaD Xy &2 Xy 2 Xy

Implication Graph G¢

20
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Given the correspondence of a 2SAT instance C with an implication graph G¢ whose number of vertices
is twice the number n of variables, and whose number of edges is twice the number m of clauses, it
seems appropriate to let m = |C| and n represent the size parameters for 2SAT.

Proposition 7.7. Given implication graph G¢ and path

P=1,....1,,

in G, there is another path, called the contrapositive of P:

P=1,...,0.

—_——

Proof. If (z,y) is an edge of G¢, then so is its contrapositive (7, T), since both are logically equivalent
to TV y. Thus, every edge in a path P =1y,ls,...,l,—1,1, corresponds with its contrapositive in the
path P =1,,l,_1,...,ls, 11, and thus both P and P are paths of G¢.

_ ‘fP‘iQ\s!&l_Q\%Qq
P = /Q>/)/q] Qz’jﬁ]

Example 7.8. Given the path P = T, 74, x2, x3 with respect to the implication graph G¢ below,
. 7 . . —-—’\R
verify that P is also in Ge. _

Implication Graph G,

21
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Theorem 7.9. 2SAT instance C is satisfiable iff every cycle in G¢ is consistent meaning that the
set of literals that make up the cycle is consistent.

Before proving Theorem 7.9, we use it to provide an algorithm showing that 2SAT can be polynomial-
time Turing reduced to Reachability by making at most 2n queries. The algorithm uses the
observation that G¢ has only consistent cycles iff, for every variable z, either x is not reachable
from Z, or T is not reachable from x (or both). For each z, this can be done with two queries to a

Reachability-oracle.
. ° LntonS \SM

Cxomplg
2SAT Algorithm

\K@yb Cﬂc\e,
Input: 2SAT instance C.

Ouput: true iff C is satisfiable. \NN\= %\e DQ Q\MS@S

Construct Ge. \\= ;\:t: O£ N\ cvr 70\_Q)lﬂy
For each z € var(C), ﬂ\ﬂ,,\ GC \(\G\S 2.0 \/W"\\OM}LS 2 M

If reachable(Ge, x,T) and reachable(Ge, T, x), then return false.

Return true. L7 D \Zﬁ_\_m — O(\[\_\,ms

oxYices €4%p
oy ASAT @\3 \nas Wovsk - Ca S
\rvi Ny g @(V\ (ﬂ%mﬁ
= OO0 OO |
—) %M&N&\C VNNV 3(\W\SZ
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Example 7.10. Consider a 2SAT instance C for which G¢ has the inconsistent cycle

C $17x37x5,l'1,$2,331. C..\
028
Verify that C i tisfiable.
CT1Ly a 1S unsatisnable \/
, D /

Q(:;/Qz S.

N

T @@
X¥ 5»:9(\5 \

CuU\S,QS

O// J/ \\

- CX‘B‘ | \>%—k 30&\53; ied) (Ys 5 Ka)E)
(K\VX—Q
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We can generalize the previous example by stating the following proposition.

Proposition 7.11. Given a 2SAT instance C that includes variable z, the following statements are
true.

1. If there is a path from = to T then no assignment that assigns x = 1 can satisfy C.

2. If there is a path from T to z then no assignment that assigns z = 0 can satisfy C.

24



Proposition 7.14 below provides the key to finding a satisfying assignment for 2SAT instance C in case
all of G¢’s cycles are consistent. It relies on the notion of a reachability set for a graph vertex.

Definition 7.12. Let G = (V, E) be a graph and v € V' a vertex of G. Then the reachability set
of v in G is the set of all vertices that can be reached by v along some path (regardless of its length).

Example 7.13. Verify that the reachability set for vertex x5 of the implication graph in Example 7.6
is equal to _—
R = @@J&M%} — R
-— — — R
Is R a consistent or inconsistent set of literals? ><2-
-

25
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Proposition 7.14. Given 2SAT instance C, implication graph Ge, and vertex/literal [, if R;, the
following statements are true.

1.

2.

If R; is an inconsistent set of literals, then no assignment that assigns [ = 1 can satisfy C.

—

If R; is a consistent set of literals, then assignment ap, satisfies every clause in C that depends
on at least one variable assigned by ag,.

Proof of Statement 1.

= 9 a w »

Since R; is inconsistent, There is a variable x for which both x and T belong to R;.

Let P=1,11,...,l.,x be a path from [ to z.
.

Letw be a path from [ to 7.

Then PoQ =1,1y,..., L.,z 1 ...,E,Zisapathfromltoz.

DA B

Therefore, by Propostion 7.11, no assignment that assigns [ = 1 can satisfy C. O

Proof of Statement 2.

A.

B.

Without loss of generality, we assume that z is a variable that is reachable from [ (a similar
argument can be made by assuming T is reachable from 1).

Consider any clause ¢ = (x,0"), where I’ is some literal. Then, since x € R, ,and c
. . =T e / . )

is satisfied. (x~ 42 \) IS 6@& \5$]€A

Now consider any clause where again [’ is some literal. Notice that (x,!’) is an
edge of G¢. Hence, since x is reachabledrom [, I’ is also reachable from [. Thus, since I’ € Ry,

ag,(I') =1 and c is satisfied. @,7_ R

Therefore, so long as a clause ¢ has either a variable or its negation t!at is reachable from [,
then ¢ will be satisfied by ag, and ap, represents a partial satisfying assignment for C. [

ple Ry =
A X(M:\

R
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Example 7.15. For the implication graph below, verify that the reachability set for vertex z; contains
both x5 and s, and so Rz, is an inconsistent reachability set which means that no assignment with

x1 = 0 can satisfy C. v =
oo X, & — = NS
= Te S RX, ) R}Z, Y J“wg(sw_
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Example 7.16. Verify that the reachability set for vertex z, of the implication graph in Example 7.6

g = =1

and show that ag,, satisfies all clauses ST T se-otie of the Variables)erl(_)fm R,,. N‘f: ‘

Clause | Implication Contrapositive

/ (fg@ Lo — Xy Ty — To
(T2, T3) | X9 — T3 T3 — T
(To,23) | X9 — 3 T3 — T
(x9,x3) | To — x3 T3 — T3

\/ (I’Q,@ To — X4 Ty — To

I/’@ f4) T1 — Ty Tq4 — T1
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Proof of Theorem 7.9. The statement of the theorem is of the form P <> (), where

1. P stands for “C is satisfiable”
2. () stands “G¢ has only consistent cycles”.

3. Thus, We can thus prove the two mathematical statements: P — @) and ) — P.

Proving P — (@)

1. We use an indirect proof by proving the contrapositive of P — @, namely Q — P.
2. Assume Q: G¢ has at least one inconsistent cycle.

3. Then there is a variable z in the cycle for which there is a path from x to T as well as a path
from T to x.

4. Then both R, and Rz are inconsistent reachcability sets.
5. Hence, by Proposition 7.14, there is no truth assignment that will satisfy C.

6. Therefore, P is true namely that C is unsatisfiable. m
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Proof of Theorem 7.9 Continued.

Proving Q — P

10.
11.
12.

. Assume Q: G¢ has only consistent cycles.

. To prove P : “C is satisfiable” we use mathematical induction on the number of variables n

that appear in one or more of the clauses of C.

Basis Step. n =0, i.e. C = (). Then C is satisfiable. Why? It helps to reframe the definition
of satisfiability as “there is some assignment « for which no clause is unsatisified by «”. This
definition is equivalent to the one given Definition 7.2 when C # (). Moreover, using this restated
definition, C = () implies that C is satisfiable since the empty assignment « = () is a variable
assignment for which no clause of C is unsatisfied by a (because C has no clauses!).

. Induction Step. Assume that any 2SAT instance having n — 1 or fewer variables and only

consistent cycles in its implication graph is satisfiable, for some n > 1. Let C be a 2SAT instance
with n variables and only consistent cycles. We show that C must also be satisfiable.

Let z be a variable of C. Then by assumption is must be true that either there is no path from
x to T in G¢ or there is no path from Z to x. Without loss of generality, assume that there is
no path from z to 7.

Then R, must be a consistent set of literals. Otherwise, as was shown in the proof of
Proposition 7.14, T would be a member of R, which we’ve assumed is not the case.

Moreover, Proposition 7.14 also implies that a g satisfies every clause that has a variable that
gets assigned by ag,, including z.

Let Cg, denote the set of clauses satisfied by ag, and consider the new 2SAT instance C' =
C — Cp, that is the result of removing the clauses in Cp, from C.

Then C’ has fewer than n variables, and since G is a subgraph of Ge, it follows that G has
only consistent cycles.

Hence, by the inductive assumption, C’ is satisfiable.
Let o denote a satisfying assignment for C’, then o/ U ap, satisfies C.

Therefore C is satisfiable. O]
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The proof of Theorem 7.9 suggests the following recursive algorithm for determining the satisfiability
of 2SAT instance C. The algorithm returns a non-empty satisfying assignment if C is satisfiable, and
returns () otherwise. In the algorithm we assume that the variables appearing in the root problem
are indexed as x1, ..., x,, for some n > 1.

Improved 2SAT Algorithm

Name: improved_2sat

Input: 28AT instance C and a pointer « to an assignment (initially, (}).
Output: true iff C is satisfiable.

Side Effect: if C is satisfiable, then « points to a sat assignment. Otherwise, o < ().
//Base Case:

If C =0, return true. //an empty set of clauses is considered satisfied
//Recursive case:

Construct Ge.

Let 7 be the least index for which z; is a variable of C.

S« () //S is the desired set of consistent literals and initialized as empty
If R, is a consistent reachability set, then S <— R,,.

_

Its = (Z) and Rz is a consistent reachability set, then S < R,

£S—0 // @ 15 UV\SG\&\SQ\(/\QDLL‘; mw*\S\S\&ﬂ\r U\CSQLQ
a <+ 0. Lo d\\(\\v\g ><~ $

Return false.

/]S #0

Update a: a + a U ag.

C' < C — Cg, where Cg denotes all clauses satisfied by ag.

Return improved_2sat(C’, «v).

Notice that the algorithm requires O(m + n) steps since every edge of G is traversed at most once
when using the reachability algorithm to compute either R,, or Rz,.
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Example 7.17. Use the improved 2SAT algorithm to determine a satisfying assignment for

C = {(.fg,fg), (1‘1,52), (IL‘3, ZL‘4)7 (fg,fg), (51754)7 (.175, 1'6), (55756)7 (fl, l'6>}

Start off by choosing [ = x;.

Solution.

1. Compute the edges for Ge.

Clause | Edges

(.732,53) EQ — Eg, T3 — Ty
(271,?2) T, — EQ’ To — X1
(I’3, I4) fg — T4, Ty — T3
(fQ,fg) To — 53, T3 —» To
(fl,le) X1 — Ty, Ty — Tq
(x5,26) | Ts — X, Tg — Ts
(f5,f6) Ty — §67 Tg — 55
(fl, IG) xr1 — Tg, f6 — T

2. Draw the implication graph

O<E=R_p (a8

S AV/ “
@= & (=) (=) © (2)

3. Compute R,, = {x1,T1, ¥, T, T3, T3, T4, T4, T, Tg} Which is inconsistent.

—

4. Compute Rz, = {71, T2, T3, x4} which is consistent. Verify that

OéRE1 = (1'1 :O,l'g :0,1’3:0,1}4: 1)

satisfies all clauses that involve variables x1, zo, x3, 4.
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5. Draw the reduced implication graph Ger where C' = {(z5, z6), (T5, T6) }-

satisfies both

6. Compute which is consistent. Verify that(ag, = (75 = 1,26 = 0)
clauses in C'.

7. Final satisfying assignment:

a=agp, Uag, = (1 =029=0,23=0,24=1125=1126=0).
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8 Finding Maximum Network Flows

Network Flow

A transportation network is directed graph G = (V, E, ¢, s,t), where ¢ : E — RT determines
the capacity of each edge, s € V is the designated source vertex and ¢t € V is the designated
destination vertex. The idea of a transportation network is that a resource (e.g. water, oil,
electricity, data, etc.) is to be sent from the source vertex s to the destination vertex ¢. Moreover,
the resource is moved from s through the edges of G on its way to t. Finally, the capacity of an edge
e reflects a bound of how much of the resource can be sent through e at any given time. Perhaps the
most example is in the case when the resource is water and the edges are pipes, and a pipe capacity
is proportional to its diameter.

Throughout this section we use the convention of not drawing a graph edge in case it’s capacity
equals zero. A flow through the network is a function f : E — R™ with the following properties:

1. For every e € E, f(e) < c(e). In other words, the flow through an edge should not exceed the
edge’s capacity.

2. For every vertex v, let ET(v) equal the set of edges that end at v, and E~(v) the set of edges
that start at v. Then for every intermediate vertex v € V' — {s,t}, we have

. fley= ) flo.

ecETt(v) ecE~(v)

In other words, the total flow entering an intermediate vertex v must equal the total flow leaving
v. Any vertex that has the above property is said to be flow conserving.
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Example 8.1. For the transortation network below, the left edge label is the edge capacity, while
the right edge-label is the flow value for a flow f.
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The size of a flow f through a network, denoted |f|, is defined as

1= > fle),

ecE~(s)

and represents the total flow that is leaving source s. For the flow f in Example 8.1 we have
fl=0+4=4.

An instance of the Max Flow optimization problem is a directed network G = (V| E, ¢, s,t) and the
problem is to find the size of the maximum flow f, i.e., the size of a flow f for which |f| > |f’| for
all other flows f’.

8.1 Minimum cuts

One means of bounding the size of a flow that can be defined on a transportation network G =

(V,E,c,s,t) is to examine a cut of the network which consists of two disjoint sets of vertices X and
Y for which i) X UY =V ii) s € X, and iii) t € Y. The size of the cut is defined as

(X, Y)= Y cle)

eeX XY

In words, it is the sum of the capacities of all edges that start in X and end in Y. Note that if
e=(z,y) € X xY isnot in F, then c(e) is defined as 0. A cut is said to be a minimum cut of G
iff its size is the least of all possible cuts of G.

Proposition 8.2. Given network G = (V, E, ¢, s,t), flow f over G, and cut (X,Y), it must be the
case that
fl < e(X,Y).

Corollary 8.3. Given network G = (V| E, ¢, s, 1), a flow over G of maximum size cannot exceed the
size of a minimum cut of V.

In the next section we prove something stronger, namely that, if f is a maximum flow over network
G, then there is a cut (X,Y') of G for which

|f‘ = C(va)a

which implies that the size of a maximum flow for a network must equal the size of a minimum cut
for the network.

The proof of Proposition 8.2 relies on the following intuitive fact of transportation networks (Exercise
12 asks for a proof of this fact using mathematical induction).

Lemma 8.4. Let H be a subgraph of network G = (V| E, ¢, s,t) that is induced by a subset U C
V —{s,t} of flow-conserving vertices. In other words, H is the subnetwork whose vertices are U and
whose edges are all the edges e € E of the form e = (u,v), where u,v € U. Then, if f is a flow over
G, then the amount of flow entering H equals the amount of flow leaving H.
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Corollary 8.5. Given flow f over network G = (V, E, ¢, s,t), the flow entering t equals |f|.

Proof of Proposition 8.2 Let f be a flow over G = (V| E,¢,s,t) and (X,Y) a cut of G. For
A, B CV, AN B = (), we use the notation f(A, B) to denote the sum of flow entering B along all
edges e = (a,b) for which a € A and b € B.

Now given the subnetwork whose vertices are Y — {t}, by Lemma 8.4, the flow entering Y — {¢} must
equal the flow leaving it, i.e.

f(XvY - {t}) = f(KX) + f(Y> {t})a
which implies
FXY ={t}) = [V, X) = [V, {t})-
Now, adding f(X, {t}) to both sides of the equation yields
JXA) + (XY = {t}) = f(V, X) = F(X {t}) + F (Y {t}),

which is equivalent (why?) to writing
fXY) = [V, X) =f].
Finally, since ¢(X,Y) > f(X,Y), we have
fl=fXY) = f(V,X) <c(X,Y). O

8.2 The Ford-Fulkerson Algorithm

We now describe the Ford-Fulkerson algorithm that is used for finding a maximum flow for a
network. The algorithm is quite relevant to the topic of Turing reducibility since, like the 2SAT
algorithm, it works by making a sequence of queries to a Reachability-oracle. However, each query
answer will provide an actual path in case the query answer is yes. It’s this path that will be used
to improve the existing network flow.

Given network G = (V) E, ¢, s,t) and flow f through G, the key idea behind the algorithm is to define
the residual network G;. with respect to G and f, where Gy = (V, E', ¢, s,t) is defined once £’
and ¢ are defined as follows. Let e = (u,v) € E’ be given. Then one of the following must be true.

1. e € E and f(e) < c(e). In this case we refer to e as a forward edge since it belongs to
the original network. Moreover, its capacity ¢’(e) = c(e) — f(e) equals the remaining unused
capacity of e.

2. ¢ = (v,u) € E and f(e") > 0. In this case we refer to e as a backward edge because it is
oriented in the opposite direction as e” € E. Moreover, its capacity ¢/(e) = f(e") equals the
amount of flow passing through e and thus is the amount of flow that can be redirected away
from e".
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Example 8.6. The network below is the residual network G for the network G and flow f shown
in Example 8.1.
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The following theorem establishes how the residual network G is used to i) determine whether f is
a maximum flow for G and ii) obtain a larger flow in case f is not a maximum flow.

Theorem 8.7. Given network G = (V, E, ¢, s,t) and flow f through G, f is a maximum flow iff ¢ is
not reachable from s in G4. In case t is reachable from s via some augmenting path P, and letting
k equal the minimum capacity of any edge traversed by P, then a new flow A(f, P) may be defined
through G as follows. For each e € E,

fle) +k if e traversed by P
A(f,P)(e) =4« f(e)—kr if e traversed by P
f(e) otherwise

Note: recall that e” refers to the backward edge associated with network edge e € E. In other words,
if e = (u,v), then e” = (v, u).

Before proving Theorem 8.7, we summarize how to obtain the new flow A(f, P) from the existing
flow f and augmenting path P.

1. If e € E is a forward edge traversed by P, then add x units of flow to e.
2. If e € F and backward edge e" is traversed by P, then subtract s units of flow from e.

3. if neither e € E nor its backward version e” is traversed by P, then do not change the flow
through e.

Proof. The statement being asserted by Theorem 8.7 has the logical form @ <+ R, where @) is the
statement “f is a maximum flow”, and R is the statement “t¢ is not reachable from s in G”.

We first prove Q — R using an indirect proof. Assume R: t is reachable from s via some path P and
let k denote the minimum capacity of any edge traversed by P. Prove Q: f' = A(f, P), as defined
in the theorem, is a flow for GG that exceeds f. To this end we first must show that, for all e € F,

0< f(e) < c(e).

Case 1: e is traversed by P. Then
0< f'(e) = f(e) + K < f(e) + (cle) — f(e)) = cle).

This is true since x is bounded above by e’s capacity in Gy which is ¢(e) — f(e).

Case 2: ¢" is traversed by P for some e € E. Then

0=f(e) = fle) < fle) —r = f'e) < fle) < c(e).

This is true since the capacity of €” is f(e) and x does not exceed this capacity.
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Case 3:

neither e nor e is traversed by P. Then the flow over e remains unchanged and so

0< f/(e) = f(e) < cle)

since f(e) already satisfies these inequalities because we are assuming that we are starting with

a valid flow f.

Lastly, we must show that all vertices in V' — {s, ¢} remain flow-conserving with respect to f’. The
only vertices for which the total flow entering and leaving a vertex may have changed are those
internal vertices that are visited by P. Let v be such a vertex and let e;, (respectively, eqyt) be
the edge traversed by P that enters (respectively, leaves) v. Then there are four cases to consider
depending on the orientation (forward or backwards) of both edges.

Case 1:

Case 2:

Case 3:

Case 4:

ein and eqyt are both forward edges. Then e;y), eqyt € £ which means P sends an additional

k units of flow both into and out of v, and so flow is conserved.

ein and eqyt are both backward edges. Then € Cout € E which means P removes x units of
flow from e;;,, that was leaving v and & units of flow from e that was entering v, and so flow

is conserved.

ejp 1s a forward edge and eqt is a backward edge. Then e, e[ . € £ which means P sends

in’
an additional k units of flow into v via €in and removes from egut Kk units of flow that was
entering v, and so flow is conserved.

eip, 1s a backward edge and et is a forward edge. Then e Cout € E which means P removes
x units of flow from el that was leaving v and adds s units of flow to eyt that is leaving v.
In other words, £ units of flow from v have been re-directed from ef to eqyt, and so flow is
conserved.

We now turn our attention to proving R — (). Assume R: t is not reachable from s in Gy. Let
X C V be the set of all vertices that are reachable from s in Gy and let Y =V —X. Then (X,Y) is a
cut of G¢. Moreover, it must be the case that there are no edges that start at X and end in Y. This
is equivalent to saying that, in the original network G, given z € X and y € Y, if e = (x,y) € F,
then f(e) = c(e), and if e = (y,x) € E, then f(e) = 0. In other words,

fl=FXY) = f(V, X) = f(X,Y) - 0= f(X,Y) = (X, Y).

Therefore, f is a maximum flow since, by Proposition 8.2 no flow over G can exceed ¢(X,Y). n
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We now summarize the Ford-Fulkerson algorithm for finding a maximum flow for a network.

Ford-Fulkerson Algorithm

Input network G = (V, E, f, s, t).
Initialize flow f, where f(e) =0, for all e € E.

While reachable(GYy, s, t) is true,

Let P be a path from s to t in GY.
Update f: f < A(f, P).

Return f.
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Example 8.8. Starting with the flow f provided in Example 8.1, use the Ford-Fulkerson algorithm
to find a maximum flow for G provided in the example.

Solution. Based on the resisual graph Gy shown in Example 8.6. We see that ¢ is reachable from s
via path P = s,a,b,t, and for which £ = min(3,4,3) = 3. The following graph now shows G with
flow fo = A(f, P). The changes made from f to f, can be described by following P: add 3 units to
(s,a), remove 3 units from (b, a), and add 3 units to (b, t).
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We now provide Gy, which shows that ¢ is not reachable from s. Therefore, f; is a maximum flow

for G.

For the running time of this algorithm, one can show that, if each augmenting path is obtained via a
breadth-first traversal of G starting at s, then the maximum flow can be obtained in O(nm?) steps.
Also, there do exist better algorithms for solving Max Flow, including one that requires O(n?) steps.

43



Figure 4: The network for Example 8.9.

Example 8.9. Consider the network G = (V, E, ¢, s,t) shown in Figure 4, along with a flow f, in
which each edge e is labeled with two numbers: the edge capacity c(e), and the flow value f(e). Draw
the residual network Gy and use it to determine an augmenting path P from s to ¢, and label G' with
the new flow f' = A(f, P), by crossing out any no-longer-valid flow labels and replacing them with
new ones.
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Turing-Reducibility Exercises

1.

10.

Find a satisfying assignment for the set of clauses
C — {(Jfl, ZUQ), (f3af4)7 (123755)7 ('r27 x5)7 (527 x3)7 (Elafﬁl)a (51755)7 (E27 x5)}
Given 2SAT instance C, if G¢ has path P = x5, T3, x5, Z1, T, then provide P.

Given 2SAT instance C, if G¢ has the inconsistent cycle C' = 3,74, x5, X1, T4, T2, T3, then
provide the subset C' C C of clauses that is associated with this cycle. Which clauses in C’
prevent a satisfying assignment from assigning x4 = 07 Which clauses in C’ prevent a satisfying
assignment from assigning x; = 1?7 Conclude that C’ (and C itself) is unsatisfiable.

For 28AT instance C, suppose you make the query reachable(Ge,z3,T3) to a Reachability
oracle who answers the query with “yes”. Assuming C is satisfiable, what can you say about a
satisfying assignment for C? Explain.

For some 2SAT instance C, is it possible to know with certainty whether or not C is satisfiable by
making exactly one query to a Reachability oracle and assuming no other knowledge about
C, including its size? Defend your answer.

Draw the implication graph for the following set of binary clauses.
(EQa f3)7 ('T27 f4)a (l’l?fiﬂ)) ('TQ; Jfg), (xlv .ZC4), (flv 1:4)’ (l’lvf2)~

Perform the Improved 2SAT Algorithm to determine a satisfying assignment for this set of
clauses. Hint: remember that the first literal tested should be z1, followed by 7, if necessary.

Repeat the previous problem, but now add the additional clause (T3, x3). Verify that there is
now an inconsistent cycle in the implication graph by performing the Improved 2SAT algorithm
and witnessing a variable x; for which both R,, and Rz, are inconsistent. Follow the hint from
Exercise 6.

Draw the implication graph for the following instance of 2SAT.
C= {(x27z4)7 (527 x5)7 (x47 3:6)7 (52754)7 (f57f6)7 (Ela l’g), (xbf?))) ($3,T5)}.

Perform the Improved 2SAT algorithm to determine a satisfying assignment for this set of
clauses. Follow the hint described in Exercise 6. Another hint: the final satisfying assignment
should equal the union of two different consistent reachability sets.

In the 2SAT algorithm, suppose the oracle answers yes to reachable(Ge, T3, 23), but no to
reachable(Gg, z3,T3). Then if C is a unique satisfying assignment «, then what can you say
about a7

A network consists of the following directed and weighted edges:
(s,a,10),(s,b,10), (a,c,10), (b,d,9), (b,e,6), (¢, b,5), (¢, t,7),(d,e,7),(d, t,5), (e, t,8).

Demonstrate the Ford-Fulkerson algorithm on this network with source vertex s, and destination
vertex t. Assume an initial flow of

f]. = (S’a'7 5)7 (a’c7 5)’ (C7 b? 5)7 (b7 d? 5)7 (d767 5)7 (e7t7 5)
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11.

12.

13.

To make it interesting, for each round of the algorithm, choose an augmenting path P from
s to t that has maximum [length, i.e., number of edges traversed by P. Draw the sequence of
residual networks and redraw the network/flow with each corresponding updated flow.

Repeat the previous exercise for the network shown below. When there is more than one
augmenting path P from s to t, choose the one having maximum length. Assume an initial flow
that is zero on all edges.

Given a network G = (V| E, ¢, s,t) and a positive flow f through G, consider the subgraph H
induced by a set of flow-conserving vertices I C V' — {s,t}. In other words, the vertex set of
H is equal to I, while e = (u,v) is an edge of H iff e € E, and u,v € I. Let ET(H) denote all
edges e = (u,v), such that e € E, u & I, and v € I, while E~(H) denotes all edges e = (u,v),
such that e € F, u € I, and v & I. Prove that

Y. fley= ) flo.

e€E+(H) c€E—(H)

In other words, flow is conserved within a subgraph induced by flow-conserving vertices. Hint:
use mathematical induction on the number of vertices in H. When adding an additional flow-
conserving vertex to H, show that the in-flow and out-flow into H is still conserved.

Saffron Oil Company owns a collection of oil pump stations that are part of a larger network of
stations. All pump stations are assumed to conserve oil, meaning that no oil is consumed by a
station. Stations owned by Saffron are called internal, while those owned by other companies
are called external. Moreover, since Saffron’s stations lie in the interior of the grid, these
stations only receive oil from other stations (either external or internal), and send oil to other
stations (either external or internal). Currently, external stations pump oil to internal stations
at a rate of 10,000 gallons per hour. Likewise, internal stations pump oil to external stations
at the same rate of 10,000 gallons per hour. This rate G is referred to as the company flow
rate. Saffron has just purchased an existing external station s. The flow rates (in gallons per
hour) of oil entering and leaving s are i) 250 gallons per hour received from external stations,
ii) 300 gallons per hour received from internal stations, iii) 400 gallons per hour sent to external
stations, and iv) 150 gallons per hour sent to internal stations. Determine the new company
flow rate after the purchase of s, and prove that the flow rate of oil received from external
stations remains equal to the flow rate of oil sent to external stations.
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Additional Exercises

A.

Explain why Marcia’s algorithm from Example 3.1 is not a polynomial-time algorithm. Hint:
when multiplying two numbers a and b, described an appropriate size parameter for measuring
the size of the problem instance.

. Suppose there is an algorithm that solves problem A in polynomial-time. Why is it the case

that A SPF B for any problem B?

Consider the following functions.

//Turing reduces A to B

Boolean solve_A_with_B(int n)

{
//Solve instance n of A by making B-queries
return query_B(n*n) || query_B(n+6);

//Turing reduces B to C

Boolean solve_B_with_C(int n)

{
//Solve instance n of B by making C-queries
return !query_C(n+8) && query_C(5%*n);

Implement a third function solve A with C that is a witness to A < C'. Note: your function
must take an instance n of A and return a Boolean decision that uses logic and is allowed to
only make C-queries.

. Use the previous exercise as inspiration for describing an algorithm that establishes A < C'

in case both A < B and B < C are true.

. Repeat the previous exercise, but replace < with §% In particular if A §’3F B is established

via an algorithm A,p that requires O(n*) steps and B S‘DT C' is established via an algorithm

Apc that requires O(n!) steps, then provide a worst-case number of steps that is required by
the algorithm A ,¢.

. For the Reachability algorithm, use math induction to prove that any vertex z that gets

marked is reachable from u. Hint: assign an index to each marked vertex that represents the
distance of that vertex from w. In particular, assign u index 0. Then if vertex w has assigned
index ¢ and (w,x) is the edge responsible for the marking of x, then assign z index i + 1.
Perform the induction on the index 7 assigned to vertex .

For the directed graph G = (V, E), where
v = {CL?b?C?d?e?f?g?h?i’j?kl}
and the edges are given by

E = {(a,0),(a;¢), (b;c), (b, d), (b,e), (b, ), (¢, 9), (¢, f),
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(d, f),(f,9),(f,h), (g, h), (i,9), (i, k), (4, )},

use the Reachability Algorithm to determine if vertex k is reachable from vertex a. Show the
contents of the FIFO queue @) at each stage of the algorithm.
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Turing Reducibility Exercise Solutions

1. Satisfying assignment: o = (1 = 0,20 = 1,23 = 1,24 = 0,25 = 1).
2. P:$77l’1,f5,$37f2.

3. Using the fact that P — Q is logically equivalent to PV @, we have

C'= {(E37f4)7 (564, 1’5), (E57 .’131), (517 1’4), (f‘l’f?)v (:U?u 5123)}

If x4 = 0, then clauses
(I’4, l’5>, (E57 xl); (fla $4>

cannot all be satisifed. Indeed, if x4 = 0, then the first clause forces x5 = 1, which forces
the second clause to assign x; = 1, which forces the third clause to assign x4 = 1, which is a
contradiction. Similarly, if x4 = 1, then clauses

(T4, T2), (22, 23), (T3, Ts)

cannot all be satisfied. Indeed, if x4 = 1, then the first clause forces x5 = 0, which forces
the second clause to assign x3 = 1, which forces the third clause to assign x4, = 0, which is
a contradiction. Thefore, any implication graph that contains such an inconsistent cycle as C'
leads to the original 2SAT instance C being unsatisfiable.

4. The satisfying assignment must assign x3 = 0, since, based on the query answer, there is a path
from x3 to T3 which means the assumption that x5 = 1 leads to a contradiction.

5. No, two queries at a minimum are needed. For example, what is the most one can say if the
query reachable(Gg, z3,T3) were answered “yes”? “no”?

6. The implication graph G is shown below. The reachability set for | = 1 is R = {x1, z2, T3, 24}
and «ap satisfies C

7. We have

Rxl = Rﬁ = {wlax_la x27$_27 x37x_37 $4,.T_4},

are both inconsistent. Therefore, C is unsatisfiable.
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(a)
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8,5

t
9,5 \fl/ 5,0 \)

Figure 5: Network G with flow f;

Figure 6: Residual Network G, with P, in green and x = 2

8. First recursive case: R,, = {z1,x3}. Second recursive case:
RCCz = {$27 T5, T, T4, T2, Ty, Te, f5}

is inconsistent. However, Rz, = {72, T4, T6, T5 } is consistent. Satisfying assignment: o = (21 =
Lxe=0,23=1,24 = 0,25 = 0,26 = 1).

9. a(x3) =1, since R,, is consistent and Rz, is inconsistent. Therefore, no satisfying assignment
can assign 0 to x3.

10. Maximum flow: s(f) = 20. See Figures 5 through 18. Note: in the residual networks, green
edges are for the augmenting path, red for backward edges, and black for forward edges.

11. Maximum flow: s(f) = 16..

12. For proving the basis step, if H has a single vertex v, then, since v is flow-conserving and the
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Figure 7: Network G with flow fy, = A(f1, P1)

7

Figure 8: Residual Network G, with P in green and x =5

10,5 o 10,5
a
N

8,7

9,7 de 5,0

Figure 9: Network G with flow f35 = A(fs, P»)
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Figure 10: Residual Network Gy, with Ps in green and £ = 2. Note: this is an error since P3 is NOT
the longest path. I have not corrected it since it requires updating all subsequent figures)

10,7 10,7

(a)
N

8,7

t
9,9 Y, 5,2 \)

Figure 11: Network G with flow f; = A(fs, Ps)
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2

Figure 12: Residual Network G, with P, in green and x = 3 (Note: this is an error since Py is NOT
the longest path. I have not corrected it since it requires updating all subsequent figures).

(o)

Figure 13: Network G with flow f5 = A(f4, Py)

Figure 14: Residual Network Gy, with P5 in green and x = 1
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Figure 15: Network G with flow fs = A(fs, Ps)

Figure 16: Residual Network Gy, with Fs in green and x = 2

10,10 ~ 10,10
a

8,8

9,9 5,9

Figure 17: Network G with flow f; = A(fs, Fs)
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Figure 18: Residual Network G, has no augmenting path from s to t. Algorithm terminates (it’s
about time!)

edges entering/leaving H are exactly the edges entering/leaving v, we have

> fle) Zf = > fle) Zf

ecE+(H) e€Et (v e€E~(v) ecE~

For proving the inductive step, now suppose that any subgraph H consisting of n — 1 flow-
conserving vertices, n > 2, satisfies

F= Y fle) Zf

e€ET(H) eeE—

where F is the total flow entering and leaving H. Let H denote all vertices of network G' that
are not in H.

Let v € H be a flow-conserving vertex. Let H’ denote the subnetwork induced by the vertices
of H together with v. We show that the flow entering and leaving H' remains equal. Define
the following values.

a. a denotes the sum of all flow entering v from H

b. b denotes the sum of all flow entering v from H

c. ¢ denotes the sum of all flow entering H from v

d. d denotes the sum of all flow entering H from v
Thus, since v is flow conserving, we have a + b = ¢+ d. To prove the inductive step, we must

show that an equal amount of flow enters and leaves H’ which is comprised of n flow-conserving
vertices. To this end, notice the following.

a. in-flow(H') = in-flow(H) + b — c. This is true since the flow entering v from H is now flow
entering H’, but the flow entering H from v is now internal flow for H'.

b. out-flow(H') = out-flow(H) + d — a. This is true since the flow leaving v to H is now flow
leaving H’, but the flow entering v from H is now internal flow for H'.
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Therefore, we have established that the flow entering H' equals the flow leaving H' iff
b—c=d—a
which is true since a + b = ¢+ d. This proves the inductive step and the result.

13. The new company flow rate is 10,100. See the proof of Exercise 12 for the rationale.
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Solutions to Additional Exercises

A.

Marcia’s algorithm does not run in polynomial time. To see this, suppose that Marcia wants
the answer to m x m. Then the the size of this problem instance is 2|logm|. However, Marcia’s
algorithm will require the inclusion of m — 1 queries

m—+m,2m+m,...,(m—1)m+m,

and m — 1 is exponential with respect to logm. Thus, the number of algorithm steps grows
exponentially with respect to the problem size.

. Suppose A can be solved by some algorithm that runs in polynomial time. Let B be any other

problem. Then A gl% B is true in a trivial sense, since the algorithm that solves A makes zero

queries to a B-oracle and so A <P B by definition of Turing reducible, since the definition
states that there exists a polynomial-time algorithm for solving A that makes “zero or more
queries” to a B-oracle.

. We have the following function that proves A < C.

//Turing reduces A to C
Boolean solve_A_with_C(int n)

{
//Solve instance n of A by making C-queries
return (!query_C((n*n)+8) && query_C(5*%(n*n))) ||
('query_C((n+6)+8) && query_C(5*(n+6)));
}

Suppose A <7 B. Then there is an algorithm A,p that solves an instance of A by making
queries to a B-oracel. Moreover, since B <7 C, there is also an algorithm Apc that solves an
instance of B by making queries to a C-oracle.

We now describe an algorithm A 4 that solves instances of A by making queries to a C-oracle.
This algorithm is obtained by modifying A 45 as follows. For each B-query step query(y), where
y is an instance of B, we replace this B-query step with a function call to Agc(y), which is the
answer returned by Apc on input y. We may think of Apc(y) as a function call that is being
made within the body of A,p. Of course, the Agc function has its own body of source code,
which is now part of the Asc code base. After modifying A4p in this manner, notice that the
only query steps in Ac are found in the inserted Apgc code, and are of the form query(z),
where z is a problem instance of C'. In other words, all queries are to a C-oracle. Hence, A4c
is an algorithm that Turing reduces A to C.

From the solution to the previous exercise, it only remains to show that A ¢ requires at most
a polynomial number of steps in n, where n the size parameter for problem A. To see this,
first note that the non-query steps of A4 are the same non-query steps as Asp and Apc.
By assumption, A4p requires at most p(n) steps, for some polynomial p(n), and Apc requires
at most g(m) steps for some polynomial g(m), where m is the size parameter for B. Also,
since Asp makes at most p(n) queries (why?) to the B-oracle, it follows that A calls the
Apc function at most p(n) times. Moreover, the running time of each function call Apc(y) is
bounded by ¢(m) and thus the m parameter is bounded by p(n), since p(n) is the maximum
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number of allowable steps that can be made to construct a query to the B-oracle, and we
may assume that it takes a single algorithm step to construct a single bit of query y. Thus,
the execution of a function call to function Apgc will have a running time that is bounded by
q(p(n)), which is a polynomial, since the compostion of two polynomials is also a polynomial.
Finally, since there are at most p(n) function calls to Agc, it follows that the total running time
due to the function calls is bounded by the polynomial p(n)q(p(n)), and so Asc has running
time

O(p(n) + p(n)q(p(n))) = O(p(n)q(p(n))),
which is a polynomial. Therefore, A S% C.

. Basis step. Suppose z is marked and has index 0. Then necessarily x = v and so z is reachable
from wu.

Inductive step. Assume that for some i > 0, any marked vertex w that has an assigned
index of i is reachable from u. Show that any marked vertex with assigned index ¢ + 1 is also
reachable from u.

Proving the inductive step. Let  be a marked vertex that has been assigned index 7 + 1.
Let (w,x) be the edge responsible for the marking of . Then w has assigned index i and by
the inductive assumption is reachable from w. But then z is also reachable from u via a path
from u to w, followed by traversing the edge (w, ).

. Queue sequence: Ql = {CL}, Q2 = {b7 C}J Q?) = {C7 d7€7g}7 Q4 = {d7 €9, f}7 Q5 = {eag7f}7
Qs ={g, [}, Qr ={f,h}, Qs = {h}, Qg = ). Therefore, vertex k is not reachable from a since

it was never marked and added to Q.
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