Context Free Languages

Last Updated: March 20th, 2025

1 Introduction

Context free languages are foundational for defining several types of computing languages that occur
in practice; including programming languages, markup languages, and languages for communication
protocols. CFL’s were first studied in relation to natural-language processing in the 1950’s.

Their importance stems from the following.

1. CFL’s are significantly more expressive than regular languages in that they are capable of
defining recursive languages that may have unlimited recursive depth.

2. a CFL can be recognized by a pushdown automaton (PDA). Unlike DFA’s a PDA has unlimited
memory, albeit in the form of a stack whose access is limited to i) reading the top of the stack,
ii) pushing on to the stack, and iii) popping the top of the stack. PDA’s are also interesting
because their nondeterministic counterparts (NPDA’s) are more powerful than PDA’s, and the
set of languages accepted by an NPDA is equal to the set of CFL languages.

3. Letting CFL denote the class of all context-free languages, it can be shown that CFL C P. This
is due to the fact that there exists a dynamic-programming algorithm that can decide any CFL
language in O(n?) steps, where n is the length of the input word. See Sipser, page 290.

Although every regular language is also a CFL (see the exercises), the converse is not true. For
example, it can be proved that the language

L={a"b"|n >0}
is a CFL but is not regular.

Proposition 1. The language
L ={a"b"In > 0}

is not regular.

Proof.

1. Suppose that L is regular and let M be a DFA that accepts L and has initial state qq.

2. Since M has a finite number of states and there are infinitely many n values, there must be at
least one state ¢ for which there is an n; > 0 and n, > 0 for which

(a) n1 # no
(b) When either a™ or a™ is read starting in state g, the computation ends at g.

(¢c) When reading b™ starting in state ¢, the computation ends in an accepting state g¢,.

3. But then the facts stated in 2) imply that, when starting in state gy and reading a"2b™, the
computation moves to state ¢ after reading a"2, followed by moving to state ¢, after reading
b™.

4. Then by 3), it follows that M accepts a™*b™ which is a contradiction, since n; # no. O

2 Context-Free Grammars
A Context-Free Grammar (CFG) is a 4-tuple (V, X, R, S), where

1. V is a finite set of variables
2. Y is a finite set that is disjoint from V', called the terminal set

3. R is a finite set of rules where each rule has the form
A — s,

where A € V and s € (V U X)*. Variable A is referred to as the head of the rule, while s is

referred to its body.
oA\ b —> aold
ConTo Sepnciliee
Tul, g

4. S €V is the start variable

Administrator
Pencil

Example 1. Consider the set of rules C
O_

R={S— 55,8 —aSh,S — ¢

T

——

Then we may use this set of rules to define a CFG G = (V, %, R, S), where
vV ={5},
Y ={a, b},

and variable S is the start variable.

For brevity we may list together rules having the same head as follows.

S%SSlaSb]a.

Here, each of the rule bodies is separated by a vertical bar.

S D
A
)
o
o
o
0
-

Administrator
Pencil

Example 2. One common use of CFG’s is to provide grammatical formalism for natural languages.
For example, consider the set of rules R:

(SENTENCE) — (NOUN-PHRASE) (VERB-PHRASE)
(NOUNPHRASEM%<COMPUiggaaﬁﬂ766MPLEKNOUNMPRERPHRA&Q
(VERB-PHRASE) — (COMPLEX-VERB) | (COMPLEX-VERB)(PREP-PHRASE)

(PREP-PHRASE) — (PREP)(COMPLEX-NOUN)
(COMPLEX-NOUN) — (ARTICLE)(NOUN)
(COMPLEX-VERB) — (VERB)|(VERB)(NOUN-PHRASE)
(ARTICLE) — a | the
(NOUN) — trainer | dog | whistle
(VERB) — calls | pets | sees

(PREP) — with | in

Here, the variables are the ten parts of speech delimited by (), 3 is the lowercase English alphabet,
including the space character, and (SENTENCE) is the start variable.

Administrator
Pencil

Example 3. A CFG may also be used to define the syntax of a programming language. One
fundamental language component to any programming language is that of an expression. The
following rules imply a CFG for defining expressions formed by a single terminal a, parentheses,
and the two arithmetic operations + and x. Here E stands for expression, T for term, and F for

factor.
« 7T 7
E—SE+T|T \\ %Jva//

T TxF|F
F—=(E)]|a
~— 0= C\
We have V ={E,T,F}, ¥ ={+, X,q,(,)}, and F is the start variable. \ 7\

Administrator
Pencil

2.1 Grammar derivations

Let G = (V, X, R, S) be a CFG, then the language D(G) € (VUX)* of derived words is structurally
defined as follows. = ==

Atom S € D(G).

Compound Rule Suppose s € D(G), s is of the form uAv for some u,v € (VUX)*, A€V, and
A — v is a rule of G, then
— uyv € D(G).

—~—
In this case we write s = u~yv, and say that s yields uyv. In words, to get a new derived word,
take an existing derived word and replace one of its variables A with the body of a rule whose

head is A. L(C?B § D <G\

The subset L(G) of derived words w € D(G) for which w € ¥* is called the context-free language
(CFL) associated with G. Thus, the words of L(G) consist only of terminal symbols.

Administrator
Pencil

2.2 The Derivation relation

Let u and v be words in (VUX)*. We say that u derives v, written u = v if and only if either u = v
or there is a sequence of words wy, wo, ..., w, such that A

U=wW = Wy = W3 = +-* = W, = 0.
— .~
Such a sequence is called a derivation sequence from u to v.

L(G) = {w € ¥*|S = w}.

Administrator
Pencil

Example 4. Use the CFG from Example 1 to derives the word aabbaababb.

S — 5SS |aSh|e. A
(2 3 C

5

)
Solution.]’ “ T\ ‘A
588 —> &% Sk g% Q@§\O\OS’\5

< S —>0ad @\@S%’é

O \Qb O\Gab Sb —
ag\obg@&ghb\%

o bb g abob c L(G}
S

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

2.3 Derivation parse trees

Determining if an arbitrary word belongs to L(G) is of fundamental importance. But in addition, it
is sometimes important to know the structure of the grammar’s derivation of the word. For example,
if a CFG generates arithmetic expressions, then knowing the structure of the derivation allows one
to readily evaluate the expression (assuming the expression terminals have assigned values and the
expression operations are properly defined). A parse tree for a word w € L(G) is a tree whose
structure and node labels reflect the derivation w, where, from left to right, the leaves of the tree are
labeled with the letters of w. Indeed, consider the derivation sequence

S=w =>wy= - = w, =w.

Then the parse tree for w can be defined in a step-by-step manner. To begin the parse tree 17 for
S = w; consists of a single node labeled with S.

Now suppose a parse tree T}, has been associated with wy, the k th word of the derivation. Moreover,
assume that, from left to right, the leaves of T} are labeled in one-to-one correspondence with the
symbols of wy. Moreover, assume that wy, has the form wy = uwAv, where A is substituted for a word
v, so that w1 = wyv. Then T}, is obtained from T} by assigning the leaf node labeled with A a
number of children equal to the length of v and for which, from left to right, the 7 th child is labeled
with the ith symbol of ~.

10

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

2.4 Ambiguity

Given a CFG G, and a word w € L(G), there may be several different derivations of w from start
symbol S. Many of these derivations however will yield identical parse trees. But in the event
that two different derivation sequences of w from S yield two different parse trees, then we call G
ambiguous. It turns out that an easy way to check for ambiguity is to check that no word w has
more than one leftmost derivation.

Given grammar G = (V, X, R, S) and word w € L(G), a derivation sequence S = wy = wy = -+ - =
W,_1 = w, = w is called a leftmost derivation of w provided that, for every 0 < i < n — 1, the
yielding of w; from w;_; was obtained by replacing the leftmost variable A of w;_; with the body
of one of a rule whose head is A. Therefore, if w has more than one leftmost derivation, it must
be the case that a different sequence of rules were used to derive w. When this happens we call G
ambiguous, since some words in the grammar have more than one parsing structure.

12

Example 6. Show that the grammar defined by the following rules is ambiguous.

(SENTENCE) — (NOUN-PHRASE) (VERB-PHRASE)
(NOUN-PHRASE) — (COMPLEX-NOUN) @OT\EEX-NOUN)(PRE@
(VERB-PHRASE) — (COMPLEX-VERB) | @‘MPLE)ﬁRB)(PREP-PHRAsm

(PREP-PHRASE) — (PREP){COMPLEX-NOUN)
(COMPLEX-NOUN) — (ARTICLE)(NOUN)
(COMPLEX-VERB) — (VERB)|(VERB)(NOUN-PHRASE)
(ARTICLE) — a | the
(NOUN) — trainer | dog | whistle
(VERB) — calls | pets | sees
(PREP) — with | in

Jr\we)Naw\ex C,o\\\S ‘\‘\\& A m\% %\uw\\\s\-\g

@5 <N> 4@ (#\3 LM ’5 (&\? <\N>

<C N7 <C N) § N7
] </ /\@\
S 2SN LP¥D

Solution.

.‘A- Tronnae x\d\i e U\)\\'\Sl(\-@

13

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Solution Continued.

14

Administrator
Pencil

Example 8. Provide a CFG G for which

L(G) = {z'y’z"]i,j,k > 0 and j = 2i or k = 2j}.

16

Example 9. Use the CFG from the previous example to provide a derivation of 22y32* and draw its
parse tree.

17

Exercises

1. For the CFG defined in Example 1, provide a derivation for the following words.

a. ababab
b. aaababbbab
c. aababaabbbaabb

2. For the CFG defined in Example 3, provide a derivation and parse tree for the following
expressions.

a. a
b. a+a

c. ax(axa)

d. ((a))

Exercise Solutions

1. We have the following derivations.

a. ababab

S = SS = aSbS = abS = abSS = abaSbS = ababS = ababaSb = ababab.

b. aaababbbab
S = SS = aSbS = aaSbbS = aaSSbbS = aaaSbSbbS = aaabSbbS = aaabaSbbbS.
= aaababbbS = aaababbbaSb =- aaababbbab.
c. aababaabbbaabb
S = SS = aSbS = aSSbS = aaSbSbS = aabSbS = aabSSbS

= aabaSbSbS = aababSbS = aababaSbbS = aababaaSbbbS = aababaabbbS
= aababaabbbaSb = aababaabbbaaSbb = aababaabbbaabb.

2. For the CFG defined in Example 3, provide a derivation and parse tree for the following
expressions.

a. a
F=T=F=a.

18

F=F+T=>T+T=>F+T=a+T=a+F=a+ta.

E=T=F=(FE)=(T)=(F)=(E)=T=F=((a).

19

20

