
Context Free Languages

Last Updated: November 17th, 2025

1 Introduction

Context free languages are foundational for defining several types of computing languages that occur
in practice; including programming languages, markup languages, and languages for communication
protocols. CFL’s were first studied in relation to natural-language processing in the 1950’s.

Their importance stems from the following.

1. CFL’s are significantly more expressive than regular languages in that they are capable of
defining recursive languages that may have unlimited recursive depth.

2. a CFL can be recognized by a pushdown automaton (PDA). Unlike DFA’s a PDA has unlimited
memory, albeit in the form of a stack whose access is limited to i) reading the top of the stack,
ii) pushing on to the stack, and iii) popping the top of the stack. PDA’s are also interesting
because their nondeterministic counterparts (NPDA’s) are more powerful than PDA’s, and the
set of languages accepted by an NPDA is equal to the set of CFL languages.

3. Letting CFL denote the class of all context-free languages, it can be shown that CFL ⊆ P. This
is due to the fact that there exists a dynamic-programming algorithm that can decide any CFL

language in O(n3) steps, where n is the length of the input word. See Sipser, page 290.

1

Although every regular language is also a CFL (see the exercises), the converse is not true. For
example, it can be proved that the language

L = {anbn|n ≥ 0}

is a CFL but is not regular.

Proposition 1. The language
L = {anbn|n ≥ 0}

is not regular.

Proof.

1. Suppose that L is regular and let M be a DFA that accepts L and has initial state q0.

2. Since M has a finite number of states and there are infinitely many n values, there must be at
least one state q for which there is an n1 > 0 and n2 > 0 for which

(a) n1 ̸= n2

(b) When either an1 or an2 is read starting in state q0, the computation ends at q.

(c) When reading bn1 starting in state q, the computation ends in an accepting state qa.

3. But then the facts stated in 2) imply that, when starting in state q0 and reading an2bn1 , the
computation moves to state q after reading an2 , followed by moving to state qa after reading
bn1 .

4. Then by 3), it follows that M accepts an2bn1 which is a contradiction, since n1 ̸= n2.

2

2 Context-Free Grammars

A Context-Free Grammar (CFG) is a 4-tuple (V,Σ, R, S), where

1. V is a finite set of variables

2. Σ is a finite set that is disjoint from V , called the terminal set

3. R is a finite set of rules where each rule has the form

A → s,

where A ∈ V and s ∈ (V ∪ Σ)∗. Variable A is referred to as the head of the rule, while s is
referred to its body.

4. S ∈ V is the start variable

3

Example 1. Consider the set of rules

R = {S → SS, S → aSb, S → ε}.

Then we may use this set of rules to define a CFG G = (V,Σ, R, S), where

V = {S},

Σ = {a, b},

and variable S is the start variable.

For brevity we may list together rules having the same head as follows.

S → SS | aSb | ε.

Here, each of the rule bodies is separated by a vertical bar.

4

Example 2. One common use of CFG’s is to provide grammatical formalism for natural languages.
For example, consider the set of rules R:

⟨SENTENCE⟩ → ⟨NOUN-PHRASE⟩⟨VERB-PHRASE⟩

⟨NOUN-PHRASE⟩ → ⟨COMPLEX-NOUN⟩ | ⟨COMPLEX-NOUN⟩⟨PREP-PHRASE⟩

⟨VERB-PHRASE⟩ → ⟨COMPLEX-VERB⟩ | ⟨COMPLEX-VERB⟩⟨PREP-PHRASE⟩

⟨PREP-PHRASE⟩ → ⟨PREP⟩⟨COMPLEX-NOUN⟩

⟨COMPLEX-NOUN⟩ → ⟨ARTICLE⟩⟨NOUN⟩

⟨COMPLEX-VERB⟩ → ⟨VERB⟩|⟨VERB⟩⟨NOUN-PHRASE⟩

⟨ARTICLE⟩ → a | the

⟨NOUN⟩ → trainer | dog | whistle

⟨VERB⟩ → calls | pets | sees

⟨PREP⟩ → with | in

Here, the variables are the ten parts of speech delimited by ⟨ ⟩, Σ is the lowercase English alphabet,
including the space character, and ⟨SENTENCE⟩ is the start variable.

5

Example 3. A CFG may also be used to define the syntax of a programming language. One
fundamental language component to any programming language is that of an expression. The
following rules imply a CFG for defining expressions formed by a single terminal a, parentheses,
and the two arithmetic operations + and ×. Here E stands for expression, T for term, and F for
factor.

E → E + T | T

T → T × F | F

F → (E) | a

We have V = {E, T, F}, Σ = {+,×, a, (,)}, and E is the start variable.

6

2.1 Grammar derivations

Let G = (V,Σ, R, S) be a CFG, then the language D(G) ∈ (V ∪Σ)∗ of derived words is structurally
defined as follows.

Atom S ∈ D(G).

Compound Rule Suppose s ∈ D(G), s is of the form uAv for some u, v ∈ (V ∪ Σ)∗, A ∈ V , and
A → γ is a rule of G, then

uγv ∈ D(G).

In this case we write
s ⇒ uγv,

and say that s yields uγv. In words, to get a new derived word, take an existing derived word
and replace one of its variables A with the body of a rule whose head is A.

The subset L(G) of derived words w ∈ D(G) for which w ∈ Σ∗ is called the context-free language
(CFL) associated with G. Thus, the words of L(G) consist only of terminal symbols.

7

2.2 The Derivation relation

Let u and v be words in (V ∪ Σ)∗. We say that u derives v, written

u
∗⇒ v

if and only if either u = v or there is a sequence of words w1, w2, . . . , wn such that

u = w1 ⇒ w2 ⇒ w3 ⇒ · · · ⇒ wn = v.

Such a sequence is called a derivation sequence from u to v.

L(G) = {w ∈ Σ∗|S ∗⇒ w}.

8

Example 4. For the arithmetic-expression CFG from Example 3 and having rule set

E → E + T | T

T → T × F | F

F → (E) | a

which of the following statements are true?

1. E ⇒ a× a

2. a+ F ⇒ a+ (E)

3. E
∗⇒ a+ T

4. (F)
∗⇒ (a× a)(a+ a)

9

Example 5. Use the CFG from Example 1 to derives the word aabbaababb.

S → SS | aSb | ε.

Solution.

10

2.3 Derivation parse trees

Determining if an arbitrary word belongs to L(G) is of fundamental importance. But in addition, it
is sometimes important to know the structure of the grammar’s derivation of the word. For example,
if a CFG generates arithmetic expressions, then knowing the structure of the derivation allows one
to readily evaluate the expression (assuming the expression terminals have assigned values and the
expression operations are properly defined). A parse tree for a word w ∈ L(G) is a tree whose
structure and node labels reflect the derivation w, where, from left to right, the leaves of the tree are
labeled with the letters of w. Indeed, consider the derivation sequence

S = w1 ⇒ w2 ⇒ · · · ⇒ wn = w.

Then the parse tree for w can be defined in a step-by-step manner. To begin the parse tree T1 for
S = w1 consists of a single node labeled with S.

Now suppose a parse tree Tk has been associated with wk, the k th word of the derivation. Moreover,
assume that, from left to right, the leaves of Tk are labeled in one-to-one correspondence with the
symbols of wk. Moreover, assume that wk has the form wk = uAv, where A is substituted for a word
γ, so that wk+1 = uγv. Then Tk+1 is obtained from Tk by assigning the leaf node labeled with A a
number of children equal to the length of γ and for which, from left to right, the i th child is labeled
with the ith symbol of γ.

11

Example 6. Use the CFG from Example 3 to derive the expression a × (a + a), and provide the
parse tree associated with the derivation.

E → E + T | T

T → T × F | F

F → (E) | a

Solution.

12

2.4 Ambiguity

Given a CFG G, and a word w ∈ L(G), there may be several different derivations of w from start
symbol S. Many of these derivations however will yield identical parse trees. But in the event
that two different derivation sequences of w from S yield two different parse trees, then we call G
ambiguous. It turns out that an easy way to check for ambiguity is to check that no word w has
more than one leftmost derivation.

Given grammar G = (V,Σ, R, S) and word w ∈ L(G), a derivation sequence S = w0 ⇒ w1 ⇒ · · · ⇒
wn−1 ⇒ wn = w is called a leftmost derivation of w provided that, for every 0 ≤ i ≤ n − 1, the
yielding of wi from wi−1 was obtained by replacing the leftmost variable A of wi−1 with the body
of one of a rule whose head is A. Therefore, if w has more than one leftmost derivation, it must
be the case that a different sequence of rules were used to derive w. When this happens we call G
ambiguous, since some words in the grammar have more than one parsing structure.

13

Example 7. Show that the grammar defined by the following rules is ambiguous.

⟨SENTENCE⟩ → ⟨NOUN-PHRASE⟩⟨VERB-PHRASE⟩

⟨NOUN-PHRASE⟩ → ⟨COMPLEX-NOUN⟩ | ⟨COMPLEX-NOUN⟩⟨PREP-PHRASE⟩

⟨VERB-PHRASE⟩ → ⟨COMPLEX-VERB⟩ | ⟨COMPLEX-VERB⟩⟨PREP-PHRASE⟩

⟨PREP-PHRASE⟩ → ⟨PREP⟩⟨COMPLEX-NOUN⟩

⟨COMPLEX-NOUN⟩ → ⟨ARTICLE⟩⟨NOUN⟩

⟨COMPLEX-VERB⟩ → ⟨VERB⟩|⟨VERB⟩⟨NOUN-PHRASE⟩

⟨ARTICLE⟩ → a | the

⟨NOUN⟩ → trainer | dog | whistle

⟨VERB⟩ → calls | pets | sees

⟨PREP⟩ → with | in

Solution.

14

Solution Continued.

15

Example 8. Provide a CFG G for which

L(G) = {anbn|n ≥ 0}.

Provide a derivation of a3b3 and draw its parse tree.

16

Example 9. Provide a CFG G for which

L(G) = {xiyjzk|i, j, k ≥ 0 and j = 2i or k = 2j}.

17

Example 10. Use the CFG from the previous example to provide a derivation of x2y3z4 and draw
its parse tree.

18

3 Chomsky Normal Form

Definition 1. Two CFG’s G1 and G2 are said to be equivalent iff L(G1) = L(G2).

Sometimes when considering a CFG, it is helpful to assume that its derivations yield binary parse
trees. It turns out that any CFG can be converted to an equivalent one that has this property.

Definition 2. A CFG G = (V,Σ, R, S) is in Chomsky Normal Form iff the following conditions
hold.

1. The start variable S may not appear on the right-hand side of any rule in R.

2. Rule A → ε is only allowed when A = S.

3. All other rules must be of the form A → BC, where B,C ∈ V − {S}, or A → a, where a ∈ Σ.

19

Administrator
Pencil

Algorithm for converting a CFG to one in CNF.

� Input: CFG G = (V,Σ, R, S)

� Output: A new CFG Ĝ in Chomsky Normal Form that is equivalent to G.

� The terminal alphabet of Ĝ is equal to Σ

� Initialize the variables and rules of Ĝ as being equal to those of G

� Add a new variable S0 to Ĝ and designate it as the start variable for Ĝ

� Add the rule S0 → S to Ĝ

� Comment: remove the ε production rules

� While there is rule of the form A → ε in Ĝ and A ̸= S0

– For each rule of the form B → u1Au2A · · ·unAun+1 (where A is not a symbol of any ui

word)

* Create 2n new rules which represent the different possible ways to make a new rule
from B → u1Au2A · · ·unAun+1 by either keeping or removing each of the A variables.

* Remove any of these new 2n rules that have the form D → ε, and have already been
processed in the outer while-loop (otherwise the algorithm will loop forever)

– Add all the newly created rules from the previous loop to Ĝ

– Remove A → ε from Ĝ

� Comment: eliminate unit rules of the form A → B

� While there is rule of the form A → B in Ĝ and B ∈ V

– For each rule of the form B → u

* Create a new rule A → u and add it to Ĝ unless it is a unit rule already processed in
the outer while loop

– Remove A → B from Ĝ

� Comment: eliminate all remaining rules not in proper form

� For each rule of the form A → u1u2 . . . uk, where k ≥ 3

– Replace this rule with the set of rules A → u1A1, A1 → u2A2, . . ., Ak−2 → uk−1uk, where
the Ai variables are all new

– For each i, if ui is a terminal symbol, then replace it with unused variable Ui, and add the
rule Ui → ui

20

Administrator
Pencil

Example 11. Apply the CNF conversion algorithm to the following CFG.

S → ASC|Bb

A → C|S

B → a|ε

C → b|B

Solution.

1. Add rule S0 → S

S0 → S

S → ASC|Bb

A → C|S
B → a|ε
C → b|B

2. Remove ε-rule B → ε

S0 → S

S → ASC|Bb|b
A → C|S
B → a

C → b|ε

3. Remove ε-rule C → ε

S0 → S

S → ASC|AS|Bb|b
A → ε|S
B → a

C → b

4. Remove ε-rule A → ε

S0 → S

S → ASC|SC|AS|S|Bb|b
A → S

B → a

21

Administrator
Pencil

Administrator
Pencil

C → b

5. Remove unit rule S0 → S

S0 → ASC|SC|AS|Bb|b
S → ASC|SC|AS|S|Bb|b
A → S

B → a

C → b

6. Remove unit rule S → S

S0 → ASC|SC|AS|Bb|b
S → ASC|SC|AS|Bb|b
A → S

B → a

C → b

7. Remove unit rule A → S

S0 → ASC|SC|AS|Bb|b
S → ASC|SC|AS|Bb|b
A → ASC|SC|AS|Bb|b
B → a

C → b

8. Add rule A1 → AS

S0 → A1C|SC|AS|Bb|b
S → A1C|SC|AS|Bb|b
A → A1C|SC|AS|Bb|b
B → a

C → b

A1 → AS

9. Add rule B1 → b

S0 → A1C|SC|AS|BB1|b
S → A1C|SC|AS|BB1|b
A → A1C|SC|AS|BB1|b
B → a

C → b

A1 → AS

B1 → b

22

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Example 12. Convert the CFG from Example 1 to an equivalent one in Chomsky Normal Form.

23

Administrator
Pencil

Example 13. Convert the CFG from Example 3 to an equivalent one in Chomsky Normal Form.

24

Administrator
Pencil

CFL Core Exercises

1. For the CFG defined in Example 1, provide a derivation for the following words.

a. ababab

b. aaababbbab

c. aababaabbbaabb

2. For the CFG defined in Example 3, provide a derivation and parse tree for the following
expressions.

a. a

b. a+ a

c. a× (a× a)

d. ((a))

3. Consider the following rules for some context free grammar G.

R → XRX | S

S → aTb | bTa

T → XTX | X | ε

X → a | b

Do the following.

a. Provide the set V of variables, the set Σ of terminals, and the start variable. Hint: we
may assume that the start variable never appears in the body of a rule, unless the head
of the rule is itself the start variable.

b. Provide three words that are in L(G) and three words that are not in L(G).

c. Which of the following statements are a) true as stated ? b) true only when ⇒ is replaced

by
∗⇒? c) false even when ⇒ is replaced by

∗⇒?

i. T ⇒ aba

ii. T ⇒ T

iii. XXX ⇒ aba

iv. X ⇒ aba

v. T ⇒ XX

vi. T ⇒ XXX

vii. S ⇒ ε

d. Provide a succinct natural-language description of L(G).

4. For each of the following context free languages, provide a set of rules that describes the
language. Assume that the terminal set for each is {0, 1}.

25

Administrator
Pencil

a. All binary words with at least three 1’s

b. All binary words that start and end with the same symbol

c. All binary words having odd length

d. All binary words of positive even length and for which the middle two bits are 00

e. All binary words that are palindromes (i.e. read the same forwards as backwards)

f. All binary words for which there are twice as many 0’s as 1’s

g. The empty set

h. The set {ε}
i. All binary words for which there are more 1’s than 0’s.

j. The complement of {anbn|n ≥ 0}

Exercise Solutions

1. We have the following derivations.

a. ababab

S ⇒ SS ⇒ aSbS ⇒ abS ⇒ abSS ⇒ abaSbS ⇒ ababS ⇒ ababaSb ⇒ ababab.

b. aaababbbab

S ⇒ SS ⇒ aSbS ⇒ aaSbbS ⇒ aaSSbbS ⇒ aaaSbSbbS ⇒ aaabSbbS ⇒ aaabaSbbbS.

⇒ aaababbbS ⇒ aaababbbaSb ⇒ aaababbbab.

c. aababaabbbaabb

S ⇒ SS ⇒ aSbS ⇒ aSSbS ⇒ aaSbSbS ⇒ aabSbS ⇒ aabSSbS

⇒ aabaSbSbS ⇒ aababSbS ⇒ aababaSbbS ⇒ aababaaSbbbS ⇒ aababaabbbS

⇒ aababaabbbaSb ⇒ aababaabbbaaSbb ⇒ aababaabbbaabb.

2. For the CFG defined in Example 3, provide a derivation and parse tree for the following
expressions.

a. a
E ⇒ T ⇒ F ⇒ a.

26

E

T

F

a

b. a+ a

E ⇒ E + T ⇒ T + T ⇒ F + T ⇒ a + T ⇒ a + F ⇒ a + a.

E

E

T

F

a

+ T

F

a

c. a× (a× a)

d. ((a))

E ⇒ T ⇒ F ⇒ (E) ⇒ (T) ⇒ (F) ⇒ ((E)) ⇒ T ⇒ F ⇒ ((a)).

27

E

T

F

(E

T

F

(a)

)

3. We have the following.

a. V = {R, S, T,X}, Σ = {a, b}, and R is the start variable.

b. aa, bb, aab ∈ L(G) and ε, a, b ̸∈ L(G).

c. Statements iv and vii are false even when “yields” is replaced by “derives”. The remaining
statements are true when “yields” is replaced by “derives”. For iii) it’s important to note
that, by definition, only one variable replacement is allowed per step, and so it would take
three steps to derive aba.

d. All words consisting of a’s and b’s and having length at least two.

4. We have the following rule sets.

a. All binary words with at least three 1’s

S → 1S1S1S | 0 | 1 | ε

28

Administrator
Pencil

Administrator
Pencil

b. All binary words that start and end with the same symbol

S → 0T0 | 1T1 | 0 | 1 | ε

T → 0T | 1T |ε

c. All binary words having odd length

S → 0S0 | 0S1 | 1S0 | 1S1 | 0 | 1

d. All binary words of positive even length and for which the middle two bits are 00

S → 0S0 | 0S1 | 1S0 | 1S1 | 00

e. All binary words that are palindromes (i.e. read the same forwards as backwards)

S → 0S0 | 1S1 | 0 | 1 | 00 | 11

f. All binary words for which there are twice as many 0’s as 1’s

S → S0S0S1S | S1S0S0S | S0S1S0S | ε

Notice how the rules provide maximum flexibility in terms of which 1 and two 0’s are going
to be written. This is needed because there could be any ordering of the 1’s and 0’s. For
example, we could have 110000000011. Provide a derivation of this word using the above
rules.

g. Any CFG G = (V,Σ, R, S) for which R = ∅.
h. The set {ε}

S → ε

i. All binary words for which there are more 1’s than 0’s.

S → S1S0S | S0S1S | 1S | ε

j. The complement of {anbn|n ≥ 0}. Hint. Notice that the set is equal to the subset of
{a, b}∗ having the form A ∪ B ∪ C, where A consists of odd-length words, B consists of
nonempty even-length words for which there is at least one b in the first half of the word,
and C consists of nonempty even-length words for which there is at least one a in the
second half of the word. Then we have

S → X | Y | Z

where X, Y , and Z are the respective start symbols for CFG’s that describe languages A,
B, and C, respectively. Now provide GFG’s for each of these languages and take the union
the grammars (making sure that the variable set for each grammar is pairwise disjoint with
the other two variable sets).

29

