Introduction to Computational Complexity Theory

Last Updated September 10th, 2025

1 Introduction

Definition 1.1. The **Computational complexity** of a computational problem refers to the minimum amount of resources (e.g. execution steps or memory) needed to solve an instance of the problem in relation to its size.

- 1. In this chapter we focus almost entirely on decision problems.
- 2. One reason for this is that the vast majority of problems that are of interest to both computing practitioners and complexity theorists are either decision or optimization problems.
- 3. Most optimization problems can be readily converted to decision problems.

Example 1.2. An instance of optimization problem Max Clique is a simple graph G, and the problem is to find the the largest clique in G. On the other hand, an instance of decision problem Clique is a pair (G, k) and the problem is to decide if G has a clique of size k.

Notice that an algorithm for solving Max Clique immediately yields an algorithm for solving Clique (why?). Furthermore, if there is an algorithm for solving Clique in O(t(n)) steps, then it can be shown that there is also one for solving Max Clique in $O(\log(n)t(n))$ steps.

Query Answer Size 380 K = 500 N K = 250 Y K = 375 + 500 N E = 375 + 500 N

2 Problem Size and Size Parameters

Definition 2.1. Given a decision problem A and an instance x of A, |x| denotes the **size** of x and equals the number of bits needed to binary-encode x. The notation |x| is often useful when speaking abstractly about a generic decision problem, and an instance x of that problem.

Definition 2.2. Given a decision problem A, a **size parameter** for A is a parameter that may be used to (approximately) represent the size of an instance of A. Given an algorithm \mathcal{A} that decides A, its size parameters allow one to describe the number of steps (and/or amount of memory) required by \mathcal{A} as a function of the size parameters.

Example 2.3. The following are some examples of problems, their size parameters, and examples of how those size parameters are used.

Clique

- 1. Instance: (G = (V, E), k)
- 2. Size parameters: m = |E|, n = |V|
- 3. Example: verifying that some k vertices form a clique can be done in $O(n^2)$ steps.

Subset Sum

- 1. Instance: (S, t)
- 2. Size parameters: n = |S|, b is the number of bits needed to write t (we assume that $t \geq s$, for all $s \in S$.
- 3. Example: verifying that a subset of S sums to t can be done in O(nb) steps.

Example: verifying that a subset of
$$S$$
 sums to t can be done in $O(n + t) = 0$

$$b = (\log_2 t) + 1$$

2SAT

- 1. Instance: \mathcal{C}
- 2. Size parameters: $m = |\mathcal{C}|$, $n = \text{number of variables of } \mathcal{C}$.
- 3. Example: verifying that an assignment α satisfies \mathcal{C} can be done in O(m) steps.

Prime

- 1. Instance: n
- 2. Size parameters: b is the number of bits needed to write n in binary. Note that b
- 3. Example: there is an algorithm that can decide Prime using $O(b^6)$ steps.

3 The Complexity Class P

Definition 3.1. A **complexity class** represents a set of decision problems, each of which can be decided by an algorithm that has one or more constraints placed on the resources (usually the number of steps or memory allowed) that it may use when deciding the problem.

Definition 3.2. Decision problem A is a member of complexity class P if there is an algorithm that decides A in a polynomial number of steps with respect to the size parameters of A.

Notes:

- 1. For example, if n is the size parameter for A, then there must be an algorithm \mathcal{A} that decides A and, for an input x of size n, \mathcal{A} requires $O(n^k)$ steps before returning 0 or 1, where $k \geq 1$ is an integer.
- 2. Recall that $f(n) = O(n^k)$ iff there exists a constant C > 0 for which $f(n) \le Cn^k$ when n is sufficiently large. Thus, if we let T(n) denote the number of steps taken by \mathcal{A} to decide instance x, where |x| = n, then we require $T(n) = O(n^k)$.
- 3. Complexity class P is considered robust in the sense that its members tend to remain the same from one model of computation to the next (granted, some models of computation are inherently inefficient, and are not appropriate for use in complexity theory).

Example 3.3. Here is a description of some important decision problems that are members of P, some of which required an algorithmic breakthrough before acquiring membership.

- **Distance between Graph Vertices** Given weighted graph G = (V, E, w), vertices $a, b \in V$, and integer $k \ge 0$, is it true that the distance from a to b does not exceed k? Dijkstra's algorithm solves this problem in $O(m \log n)$ steps.
- **Primality Test** Given natural number $n \geq 2$ is n prime? (see "PRIMES is in P", Annals of Mathematics, Pages 781-793 from Volume 160 (2004), Issue 2 by Manindra Agrawal, Neeraj Kayal, Nitin Saxena). The algorithm requires $O(\log^6 n)$ steps.
- **Linear Optimization** Given i) function f(x) = cx, for some $1 \times n$ -dimensional constant matrix c and $n \times 1$ real-valued matrix x, ii) constant $k \in \mathcal{R}$, iii) $m \times n$ constant matrix A, and iv) $m \times 1$ constant matrix a, is it true that there is an a for which

$$f(x) = cx \le k,$$

subject to

$$Ax > b$$
?

Karmarkar's algorithm solves this problem in $O(n^{3.5}L^2 \cdot \log L \cdot \log(\log L))$ steps, where n is the number of problem variables, and L is the number of bits needed to encode an problem instance.

- **Maximum Flow** Given directed network G = (V, E, c, s, t) and integer $k \ge 0$, is there a flow from s to t of size at least k? The Ford Fulkerson algorithm solves this problem in $O(n^3)$ steps.
- **Perfect Matching** Given bipartite graph G = (U, V, E), where |U| = |V| = n, does G have a **perfect matching**, i.e. a set of edges $M = \{e_1, \ldots, e_n\} \subseteq E$ such that any two edges $e_i, e_j \in M$ neither share a vertex in U, nor share a vertex in V? The Ford Fulkerson algorithm solves this problem in $O(n^2 + mn)$ steps.
- **2SAT** Given a set of Boolean formulas C, where each formula (called a **clause**) has the form $a \vee b$, where a and b are literals, is there a truth assignment for the variables so that each clause has at least one literal that is assigned **true**? This problem can be solved in O(m+n) steps.
- Bitonic Traveling Salesperson given n cities c_1, \ldots, c_n , where c_i has grid coordinates (x_i, y_i) , and a cost matrix C, where entry C_{ij} denotes the cost of traveling from city i to city j, determine a left-to-right followed by right-to-left Hamilton-cycle tour of all the cities that minimizes the total traveling cost. In other words, the tour starts at the leftmost city, proceeds from left to right visiting a subset of the cities (including the rightmost city), and then concludes from right to left visiting the remaining cities. The problem can be solved in $O(n \log^2 n)$ steps.

Example 3.4. An instance of 10-Clique is a simple graph G = (V, E) and the problem is to decide if G has a clique of size 10. Show that 10-Clique is in P. In general, for any integer constant C > 0, the C-Clique decision problem is in P.



Example 3.5. An instance of the 10-Path is a simple graph G = (V, E) and the problem is to decide if G has a simple path of length equal to 10. Show that 10-Path is in P. In general, for any integer constant C > 0, the C-Path decision problem is in P.

Solution.

Nertices Simple

We need a path of length 10,

i.e. a segrence of 11 distinct

vertices $n(n-1)(n-2) \circ \circ \circ (n-10) = 0$ $n(n-1)(n-2) \circ \circ \circ (n-10) = 0$

Figure 1: Solving an NP problem can be like finding a needle in a haystack.

4 The Complexity Class NP

Definition 4.1. Decision problem A is a member of complexity class NP if there is

- 1. a set Cert, called the **certificate set**,
- 2. a decision algorithm V, called the **verifier**, which has the following properties:
 - (a) the inputs to V are i) an instance x of A and ii) a certificate $c \in Cert$
 - (b) the output is 1 iff c is a **valid certificate** for x, meaning that c proves that x is a positive instance of A
 - (c) V requires a polynomial number of steps with respect to the size parameters of A.

Although, for any given instance x of A and any certificate $c \in Cert$, the verifier only requires a polynomial number of steps, what makes some NP problems very difficult to solve is that there are usually an exponential number of certificates, and finding a valid one is like finding a "needle-in-a-haystack" because there is no apparent way to avoid having to examine an exponential (in the size parameters of A) number of certificates.

Example 4.2. We show that Clique \in NP. Let (G = (V, E), k) be a problem instance for Clique.

Step 1: define a certificate. Certificate C is a subset of V where |C| = k.

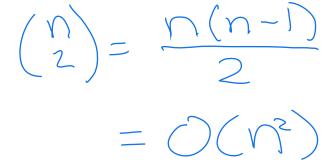
Step 2: provide a semi-formal verifier algorithm.

For each $u \in C$,

For each $v \in C$ with $u \neq v$,

If $(u, v) \notin E$, then return 0.

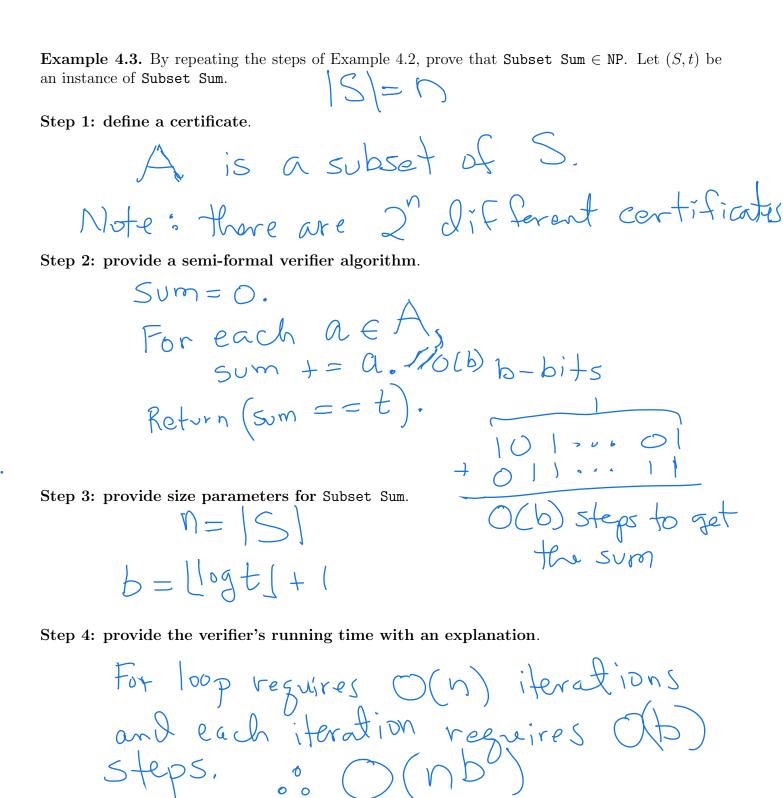
Return 1.



Step 3: size parameters for Clique. m = |E| and n = |V|.

Step 4: provide the verifier's running time with an explanation.

The nested for-loops require at most $k^2 = O(n^2)$ query to determine if a pair of vertices (u, v). Each query can be answered using a hash table that stores the graph edges. Building such a table takes $\Theta(m)$ steps. Thus, algorithm's total number of steps is $O(m+n^2) = O(n^2)$ steps, which is quadratic in the size of (G, k).



Example 4.4. Recall from Exercise 10 of the Computational Problems lecture that the 3-Dimensional Matching (3DM) decision problem takes as input three sets A, B, and C, each having size n, along with a set S of triples of the form (a,b,c) where $a \in A$, $b \in B$, and $c \in C$. We assume that $|S| = m \ge n$. The problem is to decide if there exists a subset $T \subseteq S$ of n triples for which each member from $A \cup B \cup C$ belongs to exactly one of the triples.

Show that (A, B, C, S) is a positive instance of 3DM, where $A = \{a, b, c\}$, $B = \{1, 2, 3\}$, $C = \{x, y, z\}$, and $S = \{(a, 1, x), (a, 2, z), (a, 3, z), (b, 1, x), (b, 2, x), (b, 3, z), (c, 1, x), (c, 2, z), (c, 3, y)\}$.

Solution.

Solution.

Example 4.5. By repeating the steps of Example 4.2, prove that $3DM \in \mathbb{N}$. Let (A, B, C, S) be an instance of 3DM.

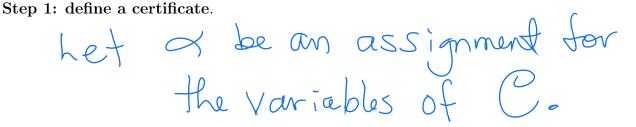
Step 1: define a certificate.

T is a subset of Size

Step 2: provide a semi-formal verifier algorithm. $H = \emptyset$ is a hash table of size 3MFor each $t \in \mathbb{T}$, $T \in \mathbb{T}$ $T \in \mathbb{T}$

Step 4: provide the verifier's running time with an explanation.

O(n) to construct H O(n) iterations and O(1) Hash Table operational steps per iteration. o o 3PMENIE **Example 4.6.** By repeating the steps of Example 4.2, prove that $2SAT \in NP$. Let C be an instance of 2SAT.



Step 2: provide a semi-formal verifier algorithm.

For each ce (Composition If (S(C[0]) = O Return O. //c is	
composition Return O. //c is	not satisfied
of functions Return 1- // & settisf	jes all clauses
C: {OsB > Literal S:Li	teral -> 20013

Step 3: provide size parameters for 2SAT.

Exercise

Step 4: provide the verifier's running time with an explanation.

Exercise

The Complexity Class co-NP

Given a decision problem L, the **complement** of L, denoted \overline{L} , is that decision problem for which a positive (respectively, negative) instance x of \overline{L} is a negative (respectively, positive) instance of L.

Example 4.7. If L is the problem of deciding if a positive integer is prime, then define its complement \overline{L} .

Solution.

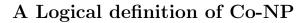
Prime = Con

Is n a composite

Even = Odd

An instance of SAT is a Boolean formula F(X1,...,Xn) Solution. and the guestion is whether or not F is satisfiable i.e. there is on assignment of over the variables of F that make F evaluate to true. F(X1,X2)=X1 \ (X2 \ X1) is satisfiable since $\alpha = (x_1 = 1, x_2 = 1)$ makes F evaluate to 1. $\frac{1}{1} \times \frac{1}{1} \times \frac{1}$

Example 4.8. Define the complement of the SAT decision problem.



is_Exen(x) Return(x°/02 == 0).

It is left as an exercise to show that if $L \in P$ then $\overline{L} \in P$. On the other hand, it is believed that NP and co-NP are different complexity classes because each has its own distinct predicate-logic definition.

For example, consider a problem $L \in \mathbb{NP}$ which has certificate set C and verifier function v(x,c). Then we may logically write that \underline{x} is a positive instance of L iff

$$\exists_{c \in C} v(x, c)$$

evaluates to 1.

Now consider its complement $\overline{L} \in \text{co-NP}$. Then we may logically write that x is a positive instance of \overline{L} iff it is a negative instance of L iff

$$\neg \exists_{c \in C} v(x, c) \Leftrightarrow \\ \bigvee_{c \in C} (\neg v(x, c)) \Leftrightarrow \\ \bigvee_{c \in C} v'(x, c).$$

evaluates to 1, where $v'(x,c) = \neg v(x,c)$. In other words, co-NP problems are logically defined with a universal predicate-logic statement, while an NP problem is logically defined with an existential predicate-logic statement. Thus, logically speaking, these classes seem different in that their problems are complementary to one another.

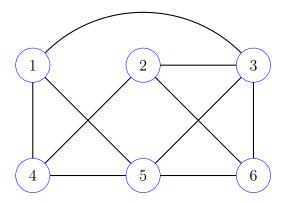
Tautology = Fallible

Tautology = Pallible

Example 4.9. For each of the following problem definitions, provide the complexity class (P, NP, or

Complexity Core Exercises

- 1. Let Triangle be the problem of deciding if a simple graph G = (V, E) has a 3-clique. Provide a semi-formal algorithm that establishes that Triangle is in P. Explain why your algorithm requires at most a polynomial number of steps.
- 2. An instance of 4-Subset Sum is a pair (S,t), where S is a set of positive integers and t>0 is a positive integer, and the problem is to decide if there are four distinct members of S, x, y, z, w, for which x+y+z+w=t. Provide a semi-formal algorithm that establishes that 4-Subset Sum is in P. Explain why your algorithm requires at most a polynomial number of steps.
- 3. An instance of the 3-Coloring decision problem is a simple graph G = (V, E), and the problem is to decide if the vertices of G can be colored using three colors (red, blue, and green) in such a way that no two adjacent vertices have the same color. In other words, does there exist a function color: $V \to \{\text{red}, \text{blue}, \text{green}\}$, for which, for any edge $(a, b) \in E$, color $(a) \neq \text{color}(b)$? For example, verify that following graph



admits the 3-coloring

Vertex	Color
1	red
2	green
3	blue
4	blue
5	green
6	red

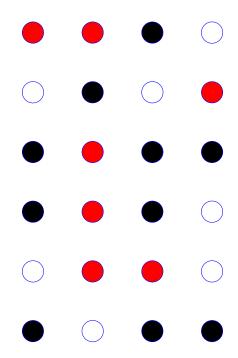
Prove that 3-Coloring is in NP by completing the following steps.

- a. Define a certificate for 3-Coloring.
- b. Provide a semi-formal algorithm for the 3-Coloring verifier.
- c. Provide size parameters for 3-Coloring.
- d. Provide the verifier's running time and defend your answer.
- 4. Recall that an instance of **Set Partition** is a set S of nonnegative integers and the problem is to decide if there are subsets $A, B \subseteq S$ for which i) $A \cap B = \emptyset$, ii) $A \cup B = S$, and iii)

$$\sum_{a \in A} a = \sum_{b \in B} b.$$

Prove that Set Partition is in NP by completing the following steps.

- a. Define a certificate for Set Partition.
- b. Provide a semi-formal algorithm for the Set Partition verifier.
- c. Provide size parameters for Set Partition.
- d. Provide the verifier's running time and defend your answer.
- 5. Recall the DHP decision problem, where an instance consists of a directed graph G = (V, E) and vertices $a, b \in V$ and the problem is to decide if G has a directed Hamilton path (DHP), Prove that DHP is in NP by completing the following steps.
 - a. Define a certificate for DHP.
 - b. Provide a semi-formal algorithm for the DHP verifier.
 - c. Provide size parameters for DHP.
 - d. Provide the verifier's running time and defend your answer.
- 6. Consider the Solitaire decision problem, where an instance consists of an $m \times n$ grid, and each square in the grid is either empty, has a single red stone, or has a single black stone. The problem is to decide if, for each column, there is a subset of the stones that can be removed so that i) every column has zero or more stones of the same color, and ii) every row has at least one stone placed in it. Show that the following is a positive instance of Solitaire.



- 7. Prove that the Solitaire decision problem defined in the previous exercise is in NP by completing the following steps.
 - a. Define a certificate for Solitaire.
 - b. Provide a semi-formal algorithm for the Solitaire verifier.

- c. Provide size parameters for Solitaire.
- d. Provide the verifier's running time and defend your answer.
- 8. An instance of Set Cover is a triple (S, m, k), where $S = \{S_1, \ldots, S_n\}$ is a collection of n subsets, where $S_i \subseteq \{1, \ldots, m\}$, for each $i = 1, \ldots, n$, and a nonnegative integer k. The problem is to decide if there are k subsets S_{i_1}, \ldots, S_{i_k} for which

$$S_{i_1} \cup \cdots \cup S_{i_k} = \{1, \ldots, m\}.$$

Verify that (S, m, k) is a positive instance of Set Cover, where m = 9, k = 4, and

$$\mathcal{S} = \{\{1,3,5\}, \{3,7,9\}, \{2,4,5\}, \{2,6,7\}, \{6,7,9\}, \{2,7,9\}, \{1,3,7\}, \{4,5,8\}\}.$$

- 9. Each of the following graph decision problems described below takes as input a simple graph G = (V, E) and a nonnegative integer $k \geq 0$. Classify each one as either being in P, NP, or co-NP.
 - a. Decide if it's true that G has not vertex cover of size k.
 - b. Decide if G has at least k connected components. Note: two vertices are in the same component iff they are both reachable from each other.
 - c. Decide if the size of every independent set of G is less than or equal to k.
 - d. Decide if G has a vertex cover of size k.
- 10. Classify each of the following problems as being in P, NP, or co-NP.
 - a. An instance of the Vertex Cover decision problem is a pair (G, k), where G = (V, E) is a simple graph, $k \ge 0$ is an integer, and the problem is to decide if G has a vertex cover of size k, i.e. a set $C \subseteq V$ for which every edge $e \in E$ is incident with at least one vertex in C.
 - b. An instance of Substring is a pair (s_1, s_2) of binary strings and the problem is to decide if s_1 occurs as a substring of s_2 . For example (10101, 001010111) is a positive instance of Substring since 10101 is a substring of 001010111.
 - c. An instance of Bounded Clique is a graph G = (V, E) and an integer $k \ge 0$ and the problem is to decide if the maximum clique in G is of a size that does not exceed k.
 - d. Given positive integers a, b, c > 0, determine if there are positive integers x and y for which $ax^2 + by = c$.

Solutions to Core Exercises

1. We have the following algorithm.

Name: has_triangle

Input: simple graph G = (V, E).

Output: true iff G has a triangle.

Add each edge $e \in E$ to a lookup table.

For each $u \in V$,

For each $v \in V$ with $v \neq u$,

For each $w \in V$ with $w \neq u$ and $w \neq v$,

If $(u, v) \in E$, and $(u, w) \in E$, and $(v, w) \in E$, Return 1.

Return 0.

Each of the three nested loops makes at most n = |V| iterations, for a total of $O(n^3)$ iterations. Therefore, Triangle is in P.

2. On inputs S and t, Consider an algorithm that iterates through each 4-subset $\{x, y, z, w\} \in S$ and checks if x + y + z + w = t. Since there are

$$\binom{n}{4} = \frac{n(n-1)(n-2)(n-3)}{4!} = \Theta(n^4),$$

4-subsets and each x + y + z + w sum requires O(3b) = O(b) steps (where b is a bound on the number of bits used by each member of S and t), we see that the algorithm requires $O(bn^4)$ steps which is a (fifth-degree) polynomial in the size parameters of 4-Subset Sum.

- 3. The following establishes 3-Coloring is in NP.
 - a. Certificate C is a vector of length n, where the i th vector component, $i \geq 1$, is one of red, blue, green.
 - b. The following is the verifier algorithm.

Inputs: i) simple graph G = (V, E) ii) certificate C which is an n-dimensional color vector, and determines the color of the i th vertex.

Output: true iff C does not color two adjacent vertices with the same color.

For each $e = (u_i, v_j) \in E$,

If $C_i = C_j$, Return 0.

Return 1.

- c. Size parameters: m = |E|, n = |V|.
- d. Algorithm analysis: the algorithm requires O(m) steps since it iterates once through the set of edges, and accessing a vertex's color from vector C can be done in constant time. Therefore, 3-Coloring is in NP.
- 4. The following establishes SP is in NP. Assume S is an instance of SP.

- a. Certificate A is a subset of S.
- b. The following is the verifier algorithm.

Inputs: i) set S of nonnegative integers, ii) certificate $A \subseteq S$.

Output: true iff the members in A sum to the members not in A (i.e. in B = S - A).

Initialize: B = S - A

Return
$$(\sum_{a \in A} a = \sum_{b \in B} b)$$
.

- c. Size parameters: n = |S|, m is a bound on the maximum number of bits required by any number in S.
- d. Algorithm analysis: the algorithm requires O(mn) steps since it requires making at most n additions with numbers that are at most m-bits each. Therefore, SP is in NP.
- 5. The following establishes DHP is in NP. Assume (G = (V, E), a, b) is an instance of HP, where $a \in V$ is the start vertex and $b \in V$ is the end vertex.
 - a. For simplicity, assume $V = \{1, ..., n\}$, a = 1, and b = n. Certificate P is a permutation of the numbers 1, ..., n.
 - b. The following is the verifier algorithm.

Inputs: i) simple graph G = (V, E), ii) certificate P, a permutation of the numbers $1, \ldots, n = |V|$.

Output: true iff *P* forms a valid Hamilton path in *G*.

If $P(1) \neq 1$ or $P(n) \neq n$, Return 0.

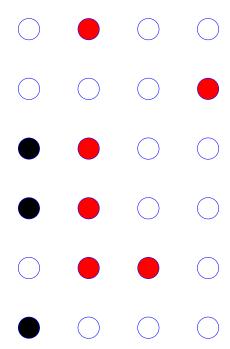
Store the edges of G in a lookup table.

For i = 1, ..., n - 1

If
$$(P(i), P(i+1) \notin E$$
, Return 0.

Return 1.

- c. Size parameters: n = |V|, m = |E|.
- d. The algorithm requires O(m+n) steps since it requires O(m) steps to build the lookup table and then O(n) to make sure each pair (P(i), P(i+1)) is an edge of G. Therefore, DHP is in NP.
- 6. Remove all the red stones from column 1, and all the black stones from columns 2-4. Notice that every row has a stone and every column has stones of the same color.



- 7. The following establishes Solitaire is in NP. Assume $m \times n$ matrix M is an instance of Solitaire, where the entries for M are either 0 (empty), 1 (black), or -1 (red).
 - a. Certificate R is an n-dimensional vector (R_1, \ldots, R_n) , where $R_j \subseteq \{1, \ldots, m\}$ indicates those row values where a stone in column j is to be removed.
 - b. The following is the verifier algorithm.

Inputs: i) $\{-1,0,1\}$ -matrix M, ii) certificate vector $R = (R_1, \ldots, R_n)$ of subsets of $\{1,\ldots,m\}$.

Output: true iff R is a legal and winning prescription for which stones are to be removed in each column.

//Check for columns that have stones of different colors.

For each $j = 1, \ldots, n$,

For each $i_1 = 1, ..., m$ for which $i_1 \notin R_j$,

For each $i_2 = 1, ..., m$ for which $i_2 \notin R_i$,

If $M[i_1, j]M[i_2, j] = -1$, Return 0. //A red and black stone each remain in column j.

//Check for rows having no stones.

For each $i = 1, \ldots, m$,

If $\forall j (M[i,j] = 0 \lor i \in R_j)$, Return 0. //Row i has no stones.

Return 1.

- c. Size parameters: m: number of rows of M. n: number of columns of M.
- d. Algorithm analysis: We assume that all membership queries to each R_j set, j = 1, ..., m, requires O(1) steps. This can be accomplished if we represent each R_j as an array of size m. Checking if any columns have different colored stones after the removals have been made requires at most $O(m^2n)$ steps, while checking if any row is empty requires O(mn) steps for a total of $O(m^2n)$ steps. Therefore, Solitaire is in NP.

8. The sets

$$\{\{1,3,5\},\{2,6,7\},\{2,7,9\},\{4,5,8\}\}$$

satisfy

$$\{1,3,5\} \cup \{2,6,7\} \cup \{2,7,9\} \cup \{4,5,8\} = \{1,2,\ldots,9\}.$$

- 9. a. co-NP
 - b. P
 - $c. \ \mathsf{co}\text{-}\mathsf{NP}$
 - d. NP
- 10. a. NP
 - b. P
 - ${\rm c.}$ co-NP
 - d. NP