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1 Introduction

Definition 1.1. The Computational complexity of a computational problem refers to the minimum
amount of resources (e.g. execution steps or memory) needed to solve an instance of the problem in
relation to its size.

1. In this chapter we focus almost entirely on decision problems.

2. One reason for this is that the vast majority of problems that are of interest to both computing
practitioners and complexity theorists are either decision or optimization problems.

3. Most optimization problems can be readily converted to decision problems.



Example 1.2. An instance of optimization problem Max Clique is a simple graph G, and the
problem is to find the the largest clique in G. On the other hand, an instance of decision problem

Clique is a pair (G, k) and the problem is to decide if G has a clique of size k.

—_———

Notice that an algorithm for solving Max Clique immediately yields an algorithm for solving Clique
(why?). Furthermore, if there is an algorithm for solving Clique in O(#(n)) steps, then it can be

shown that there is also one for solving Max Clique in O(log(n)t(n)) steps.
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2 Problem Size and Size Parameters

Definition 2.1. Given a decision problem A and an instance x of A, |z| denotes the size of x and
equals the number of bits needed to binary-encode x. The notation |x| is often useful when speaking
abstractly about a generic decision problem, and an instance x of that problem.

Definition 2.2. Given a decision problem A, a size parameter for A is a parameter that may be
used to (approximately) represent the size of an instance of A. Given an algorithm .4 that decides A,
its size parameters allow one to describe the number of steps (and/or amount of memory) required
by A as a function of the size parameters.



Example 2.3. The following are some examples of problems, their size parameters, and examples
of how those size parameters are used.

Clique

2.
3.

1. Instance: (G = (V, E), k)

Size parameters: m = |E|, n = |V/|

Example: verifying that some k vertices form a clique can be done in O(n?) steps.

Subset Sum 1. Instance: (5,t)

28AT

Prime

2.

—_

2.

3.

Size parameters: n = |S|, b is the number of bits needed to write ¢ (we assume that ¢ > s,
for all s € S.

. Example: verifying that a subset of S sums to ¢ can be done in O(nb) steps.

‘6 = Q\DO b: \D\
o =(log, £+ \

. Instance: C

Size parameters: m = |C|, n = number of variables of C.

Example: verifying that an assignment « satisfies C can be done in O(m) steps.

1. Instance: n

Size parameters: b is the number of bits needed to write n in binary. Note that b =
llogn] + 1. ~

Example: there is an algorithm that can decide Prime using O(b°) steps.



Administrator
Pencil


3 The Complexity Class P

Definition 3.1. A complexity class represents a set of decision problems, each of which can be
decided by an algorithm that has one or more constraints placed on the resources (usually the number
of steps or memory allowed) that it may use when deciding the problem.

Definition 3.2. Decision problem A is a member of complexity class P if there is an algorithm that
decides A in a polynomial number of steps with respect to the size parameters of A.

Notes:

1. For example, if n is the size parameter for A, then there must be an algorithm A that decides
A and, for an input x of size n, A requires O(n*) steps before returning 0 or 1, where k > 1 is
an integer. ——

2. Recall that f(n) = O(n*) iff there exists a constant C' > 0 for which f(n) < Cn* when n is
sufficiently large. Thus, if we let T'(n) denote the number of steps taken by A to decide instance
x, where |x| = n, then we require T'(n) = O(n").

3. Complexity class P is considered robust in the sense that its members tend to remain the
same from one model of computation to the next (granted, some models of computation are
inherently inefficient, and are not appropriate for use in complexity theory).
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Example 3.3. Here is a description of some important decision problems that are members of P,
some of which required an algorithmic breakthrough before acquiring membership.

Distance between Graph Vertices Given weighted graph G = (V, E, w), vertices a,b € V, and
integer k > 0, is it true that the distance from a to b does not exceed k7 Dijkstra’s algorithm
solves this problem in O(mlogn) steps.

Primality Test Given natural number n > 2 is n prime? (see “PRIMES is in P”, Annals of
Mathematics, Pages 781-793 from Volume 160 (2004), Issue 2 by Manindra Agrawal, Neera]
Kayal, Nitin Saxena). The algorithm requires O(log® n) steps.

Linear Optimization Given i) function f(z) = cz, for some 1 x n-dimensional constant matrix ¢
and n x 1 real-valued matrix z, ii) constant k € R, iii) m X n constant matrix A, and iv) m x 1
constant matrix b, is it true that there is an x for which

flx)=cx <k,

subject to
Ax > b?

Karmarkar’s algorithm solves this problem in O(n*°L? - log L - log(log L)) steps, where n is
the number of problem variables, and L is the number of bits needed to encode an problem
instance.

Maximum Flow Given directed network G = (V, E, ¢, s,t) and integer k > 0, is there a flow from
s to t of size at least k? The Ford Fulkerson algorithm solves this problem in O(n?) steps.

Perfect Matching Given bipartite graph G = (U,V, E), where |U| = |V| = n, does G have a
perfect matching, i.e. aset of edges M = {ey,...,e,} C E such that any two edges e;,e; € M
neither share a vertex in U, nor share a vertex in V7 The Ford Fulkerson algorithm solves this
problem in O(n? + mn) steps.

2SAT Given a set of Boolean formulas C, where each formula (called a clause) has the form a Vv b,
where a and b are literals, is there a truth assignment for the variables so that each clause has
at least one literal that is assigned true? This problem can be solved in O(m + n) steps.

Bitonic Traveling Salesperson given n cities ¢y, .. ., ¢,, where ¢; has grid coordinates (z;, y;), and
a cost matrix C, where entry C;; denotes the cost of traveling from city ¢ to city j, determine
a left-to-right followed by right-to-left Hamilton-cycle tour of all the cities that minimizes the
total traveling cost. In other words, the tour starts at the leftmost city, proceeds from left to
right visiting a subset of the cities (including the rightmost city), and then concludes from right
to left visiting the remaining cities. The problem can be solved in O(nlog®n) steps.
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Example 3.4. An instance of 10-Clique is a simple graph G = (V, E)) and the problem is to decide
if G has a clique of size 10. Show that 10-Clique is in P. In general, for any integer constant C' > 0,
the C-Clique decision problem 1s in P

Solution. < B Y\C‘m Xﬂ Z\{ N %Lﬂv XV\Y—\Q}E&V;&?EVE:Q{
O
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Example 3.5. An instance of the 10-Path is a simple graph G = (V, E) and the problem is to decide
if G has a simple path of length equal to 10. Show that 10-Path is in P. In general, for any integer
constant C' > 0, the C-Path decision problem is in P.
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Figure 1: Solving an NP problem can be like finding a needle in a haystack.

4 The Complexity Class NP

Definition 4.1. Decision problem A is a member of complexity class NP if there is

1. a set Cert, called the certificate set,
2. a decision algorithm V, called the verifier, which has the following properties:

(a) the inputs to V are i) an instance x of A and ii) a certificate ¢ € Cert

(b) the output is 1 iff ¢ is a valid certificate for 2, meaning that ¢ proves that x is a positive
instance of A

(c) V requires a polynomial number of steps with respect to the size parameters of A.

Although, for any given instance x of A and any certificate ¢ € Cert, the verifier only requires a
polynomial number of steps, what makes some NP problems very difficult to solve is that there are
usually an exponential number of certificates, and finding a valid one is like finding a “needle-in-a-
haystack” because there is no apparent way to avoid having to examine an exponential (in the size
parameters of A) number of certificates.



Example 4.2. We show that Clique € NP. Let (G = (V, E), k) be a problem instance for Clique.
Step 1: define a certificate. Certificate C' is a subset of V' where |C| = k.

/\//

Step 2: provide a semi-formal verifier algorithm.

Cﬂ\ (0=
For each u € C, 7 — 2

For each v € C' with u # v,

If (u,v) € E, then returri_g.\ @ C/ \ > o C 2>
Return 1. o O ‘ m
)

Step 3: size parameters for Clique. m = |E| and n = |V|. f\(\

Step 4: provide the verifier’s running time with an explanation.

The nested for-loops require at most k% = O(n?) query to determine if a pair of vertices (u,v). Each
query can be answered using a hash table that stores the graph edges. Building such a table takes
O(m) steps. Thus, algorithm’s total number of steps is O(m +n?) = O(n?) steps, which is quadratic
in the size of (G, k). ==

10
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Example 4.3. By repeating the steps of Example 4.2, prove that Subset Sum € NP. Let (S,t) be

an instance of Subset Sum. \ g\ m

Step 1: define a certificate.

/‘&\V N Su\QSexV Dg S
}\)\7[1@ P %We fc € Qﬂ (QYQ Q@VM\JQ' CW+7SI@\§:&

Step 2: provide a semi-formal verifier algorithm.
Suvm= 0.

o each @< ]L\)
Su™n > = &,//O£b> h*b'+5

R@{—vvn<®m — = ‘E} P_/_N_l..’—j

\O"Ub Ol

+ o1y }
Step 3: provide size parameters for Subset Sum.

0o | DL Shegs 4o 3t
S
=gt [+ T sum
Step 4: provide the verifier’s running time with an explanation.
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Example 4.4. Recall from Exercise 10 of the Computational Problems lecture that the 3-Dimensional
Matching (3DM) decision problem takes as input three sets A, B, and C, each having size n along
with a set S of triples of the form (a,b,c) where a € A, b € B, and ¢ € C. We assume that
|S| = m > n. The problem is to decide if there exists a subset 7' C S of n triples for which each
“member from AU B U C belongs to exactly one of the triples.

Show that (A, B, C, S) is a positive instance of 3DM, where A = {a,b,c}, B ={1,2,3}, C = {x,y, 2z},
~— S ——
and . v 17‘

\\S: {(a,1,2),(a,2, 2),(a,3, z), (b, 1,2),(b,2,2),(b,3, 2), (¢, 1, x), (¢, 2,2),(c,3,y)}

Solution. T <Q>2)2x><bj XS (Q 338
s o SDM
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Example 4.5. By repeating the steps of Example 4.2, prove that 3DM € NP. Let (A, B,C,S) be an

instance of 3DM. N= IA k: \\g\: -

Step 1: define a certificate.

\c
M s @ Sukset ol S of

Size M
Step 2: provide a semi-formal verifier algorithm.

H= 9 i< a hah fable ok =2 >N

e e té T
- _‘Q_“Lfr\m<t ['oleDH VAR H \\/ %nggliﬂw)
P\Q,JV\)W\ @F //S&M\i %memom o \LP

?\e‘\_\)g\:vx§w‘\' (H) ‘L’EZS)B y Tnset (W& (_TD)'I,V\SQ,C%L&){@

Step 3: provide size parameters for 3DM.

el = A= Bl=IC|

Step 4: provide the verifier’s running time with an explanation.

%%3) %?QJQTM’ZX () Hesh Table
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Example 4.6. By repeating the steps of Example 4.2, prove that 2SAT € NP. Let C be an instance
of 2SAT.

Step 1: define a certificate.

S = o @ ass]jnmu& Sev
TLE\SL \/a/rimlobﬁ Of( 6,?

Step 2: provide a semi-formal verifier algorithm.

OQ _C\J r\(;‘\’\\'OYW

?er\)m \ - //a§ 5QT5Q§GS C,\B\D c_\ovméaj

C 4 79518—> Lidere =S ¢ LiYevol = SLQJ\\\

Step 3: provide size parameters for 2SAT.

éﬂ@\rd&—e

Step 4: provide the verifier’s running time with an explanation.

 Kecise
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The Complexity Class co-NP

Given a decision problem L, the complement of L, denoted L, is that decision problem for which
a positive (respectively, negative) instance x of L is a negative (respectively, positive) instance of L.

Example 4.7. If L is the problem of deciding if a positive integer is prime, then define its complement
L.

—_— ) v
Solution. P . — C’S M?IOSAY{
\!
T ) Q& Co”)lDOS\q’E
SNTTA=IN 2

Even = Qé\cl
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Example 4.8. Define the complement of the SAT decision problem.

On vash ance ofF SAT WS
o o Boslean emda JFO&\),,.)%YS
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. N
\DS Lgl;v\ Qi\\ L O>,
A Logical definition of Co-NP P\Q;\'\)\r(\ OCK /o 2

It is left as an exercise to show that if L € P then L € P. On the other hand, it is believed that NP and
co-NP are different complexity classes because each has its own distinct predicate-logic definition.

For example, consider a problem L € NP which has certificate set C' and verifier function v(x,c).
Then we may logically write that z is a positive instance of L iff

3 v(z,c)
ceC
~

evaluates to 1.

Now consider its complement L € co-NP. Then we may logically write that x is a positive instance
of L iff it is a negative instance of L iff e

<

~——

- Ju(z,c) &
ceC
‘}'\,_/
Y (w(r,0)

/
CGVCU (z,c).
evaluates to 1, where v/'(z,c) = —w(z, ¢). IIMMS, co-NP problems are logically defined with
a universal predicate-logic statement, while an NP problem is logically defined with an existential
predicate-logic statement. Thus, logically speaking, these classes seem different in that their problems
are complementary to one another.

17
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Example 4.9. For each of the following problem definitions, provide the complexity class (P, NP, or

co-NP) that best fits the problem.~ .
Tw\&@\(){gg = Fa \\\ §>l€,

Tautology Given a Boolean formula F(xy,...,z,) does F evaluate to 1 on all possible 2" binary
input vectors? CQ—\- ’\

Reachability Given a simple graph G = (V, F) and two vertices a,b € V, does there exist a path
in G starting at a and ending at b7 /-D

Dominating Set Given a simple graph G = (V, E) and an integer k& > 0, does there exist a set D of

k vertices for which ﬂe% vertex in V' — D is adjacent to some VGW

Bounded Cliques Given a simple graph G = (V, E) and an integer k > 0, it true that G has no

k-cliques? C O — ]

Y= bi)%*m 'S O %N,é@\@
Fos‘l%'mﬂ Lov %bw&ug Q\"@@\S ~ WNo Kvaxcb\ye
A 1T e i3 e K—\igs,

> ?asljs‘\& Lo C\CbVQ QW\\?
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Complexity Core Exercises

1. Let Triangle be the problem of deciding if a simple graph G = (V| F) has a 3-clique. Provide
a semi-formal algorithm that establishes that Triangle is in P. Explain why your algorithm
requires at most a polynomial number of steps.

2. An instance of 4-Subset Sum is a pair (5, t), where S is a set of positive integers and ¢ > 0 is a
positive integer, and the problem is to decide if there are four distinct members of S, x, vy, z, w,
for which x + y + 2z + w = t. Provide a semi-formal algorithm that establishes that 4-Subset
Sum is in P. Explain why your algorithm requires at most a polynomial number of steps.

3. An instance of the 3-Coloring decision problem is a simple graph G = (V, E), and the problem
is to decide if the vertices of G can be colored using three colors (red, blue, and green) in such
a way that no two adjacent vertices have the same color. In other words, does there exist a
function color : V' — {red, blue, green}, for which, for any edge (a,b) € E, color(a) # color(b)?
For example, verify that following graph

admits the 3-coloring

Vertex Color
red
green
blue
blue
green

6 red
Prove that 3-Coloring is in NP by completing the following steps.

Uk~ W N+~

a. Define a certificate for 3-Coloring.
b. Provide a semi-formal algorithm for the 3-Coloring verifier.
c. Provide size parameters for 3-Coloring.

d. Provide the verifier’s running time and defend your answer.

4. Recall that an instance of Set Partition is a set .S of nonnegative integers and the problem
is to decide if there are are subsets A, B C S for which i) AN B =1, ii) AUB =S, and iii)

Za:Zb.

a€A beB
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Prove that Set Partition is in NP by completing the following steps.

a. Define a certificate for Set Partition.
b. Provide a semi-formal algorithm for the Set Partition verifier.
c. Provide size parameters for Set Partition.
d. Provide the verifier’s running time and defend your answer.
5. Recall the DHP decision problem, where an instance consists of a directed graph G = (V, E') and

vertices a,b € V and the problem is to decide if G has a directed Hamilton path (DHP), Prove
that DHP is in NP by completing the following steps.

a. Define a certificate for DHP.
b. Provide a semi-formal algorithm for the DHP verifier.
c. Provide size parameters for DHP.

d. Provide the verifier’s running time and defend your answer.

6. Consider the Solitaire decision problem, where an instance consists of an m x n grid, and
each square in the grid is either empty, has a single red stone, or has a single black stone. The
problem is to decide if, for each column, there is a subset of the stones that can be removed so
that i) every column has zero or more stones of the same color, and ii) every row has at least
one stone placed in it. Show that the following is a positive instance of Solitaire.

® 6 o O

O @ @ O
® ¢ o o
@ 6 o O
O 0O @ @

® O o ©

7. Prove that the Solitaire decision problem defined in the previous exercise is in NP by completing
the following steps.

a. Define a certificate for Solitaire.

b. Provide a semi-formal algorithm for the Solitaire verifier.

20



c. Provide size parameters for Solitaire.
d. Provide the verifier’s running time and defend your answer.
8. An instance of Set Cover is a triple (S, m, k), where § = {S1,...,S5,} is a collection of n

subsets, where S; C {1,...,m}, for each i = 1,...,n, and a nonnegative integer k. The
problem is to decide if there are k subsets 5;,,...,.S;, for which

Sil U"'USZ‘k :{1,,m}
Verify that (S, m, k) is a positive instance of Set Cover, where m =9, k = 4, and

S ={{1,3,5},{3,7,9},{2,4,5},{2,6,7},{6,7,9},{2,7,9},{1,3,7},{4,5,8} }.

9. Each of the following graph decision problems described below takes as input a simple graph
G = (V,F) and a nonnegative integer k& > 0. Classify each one as either being in P, NP, or
co-NP.

a. Decide if it’s true that G has not vertex cover of size k.

b. Decide if G has at least k connected components. Note: two vertices are in the same
component iff they are both reachable from each other.

c. Decide if the size of every independent set of G is less than or equal to k.

d. Decide if G has a vertex cover of size k.
10. Classify each of the following problems as being in P, NP, or co-NP.

a. An instance of the Vertex Cover decision problem is a pair (G, k), where G = (V, E) is a
simple graph, £ > 0 is an integer, and the problem is to decide if G has a vertex cover
of size k, i.e. a set C' C V for which every edge e € E is incident with at least one vertex
in C.

b. An instance of Substring is a pair (s, s2) of binary strings and the problem is to decide
if s; occurs as a substring of so. For example (10101,001010111) is a positive instance of
Substring since 10101 is a substring of 001010111.

c. An instance of Bounded Clique is a graph G = (V,E) and an integer & > 0 and the
problem is to decide if the maximum cligeu in G is of a size that does not exceed k.

d. Given positive integers a,b,c¢ > 0, determine if there are positive integers x and y for
which az? + by = c.
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Solutions to Core Exercises

1. We have the following algorithm.

Name: has_triangle
Input: simple graph G = (V| E).
Output: true iff G has a triangle.
Add each edge e € F to a lookup table.
For each u € V,
For each v € V' with v # u,
For each w € V with w # v and w # v,
If (u,v) € E, and (u,w) € E, and (v,w) € E, Return 1.
Return 0.

Each of the three nested loops makes at most n = |V| iterations, for a total of O(n?) iterations.
Therefore, Triangle is in P.

2. On inputs S and t, Consider an algorithm that iterates through each 4-subset {x,y, z,w} € S
and checks if x 4+ y 4+ z + w = t. Since there are

() -l 2 g

4-subsets and each z + y + z + w sum requires O(3b) = O(b) steps (where b is a bound on the
number of bits used by each member of S and t), we see that the algorithm requires O(bn?)
steps which is a (fifth-degree) polynomial in the size parameters of 4-Subset Sum.

3. The following establishes 3-Coloring is in NP.

a. Certificate C is a vector of length n, where the ¢ th vector component, ¢ > 1, is one of
red, blue, green.

b. The following is the verifier algorithm.
Inputs: i) simple graph G = (V, E) ii) certificate C' which is an n-dimensional color
vector, and determines the color of the 7 th vertex.
Output: true iff C' does not color two adjacent vertices with the same color.
For each e = (u;,v;) € E,
If C; = Cj, Return 0.
Return 1.
c. Size parameters: m = |E|, n = |V|.

d. Algorithm analysis: the algorithm requires O(m) steps since it iterates once through the
set of edges, and accessing a vertex’s color from vector C' can be done in constant time.
Therefore, 3-Coloring is in NP.

4. The following establishes SP is in NP. Assume S is an instance of SP.
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a. Certificate A is a subset of S.
b. The following is the verifier algorithm.

Inputs: i) set S of nonnegative integers, ii) certificate A C S.

Output: true iff the members in A sum to the members not in A (i.e. in B = 5—A).
Initialize: B=5 — A

Return (> a= >_b).

acA beB
c. Size parameters: n = |S|, m is a bound on the maximum number of bits required by any
number in S.

d. Algorithm analysis: the algorithm requires O(mn) steps since it requires making at most
n additions with numbers that are at most m-bits each. Therefore, SP is in NP.

5. The following establishes DHP is in NP. Assume (G = (V, E),a,b) is an instance of HP, where
a € V is the start vertex and b € V' is the end vertex.

a. For simplicity, assume V' = {1,...,n}, a = 1, and b = n. Certificate P is a permutation
of the numbers 1,...,n.

b. The following is the verifier algorithm.

Inputs: i) simple graph G = (V, E), ii) certificate P, a permutation of the numbers
L...,n=1V].
Output: true iff P forms a valid Hamilton path in G.
If P(1) # 1 or P(n) # n, Return 0.
Store the edges of GG in a lookup table.
Fori=1,...,n—1
If (P(i),P(i+ 1) ¢ E, Return 0.
Return 1.
c. Size parameters: n = |V|, m = |E|.

d. The algorithm requires O(m + n) steps since it requires O(m) steps to build the lookup
table and then O(n) to make sure each pair (P(i), P(i + 1)) is an edge of G. Therefore,
DHP is in NP.

6. Remove all the red stones from column 1, and all the black stones from columns 2-4. Notice
that every row has a stone and every column has stones of the same color.
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7. The following establishes Solitaire is in NP. Assume m X n matrix M is an instance of
Solitaire, where the entries for M are either 0 (empty), 1 (black), or -1 (red).

a. Certificate R is an n-dimensional vector (Ry, ..., R,), where R; C {1,...,m} indicates
those row values where a stone in column j is to be removed.

b. The following is the verifier algorithm.
Inputs: i) {—1,0, 1}-matrix M, ii) certificate vector R = (R, ..., R,) of subsets of

{1,...,m}.
Output: true iff R is a legal and winning prescription for which stones are to be
removed in each column.

//Check for columns that have stones of different colors.
For each j =1,...,n,
For each i; = 1,...,m for which i; € R;,
For each i = 1,...,m for which iy € R,

If Mliy,j]M]ia, j] = —1, Return 0. //A red and black stone each remain in
column j.

//Check for rows having no stones.

Foreachi=1,...,m,
If Vj(Mi,j] =0V i€ R;), Return 0. //Row ¢ has no stones.
Return 1.

c. Size parameters: m: number of rows of M. n: number of columns of M.

d. Algorithm analysis: We assume that all membership queries to each R; set, j =1,...,m,
requires O(1) steps. This can be accomplished if we represent each R; as an array of size
m. Checking if any columns have different colored stones after the removals have been
made requires at most O(m?n) steps, while checking if any row is empty requires O(mn)
steps for a total of O(m?n) steps. Therefore, Solitaire is in NP.

24



8. The sets

10.

satisfy

8 0

/o

IS

o @

co-NP

co-NP
NP

NP

co—-NP
NP

{{1,3,5},{2,6,7},{2,7,9},{4,5,8}}

{1,3,5}U{2,6,7} U{2,7,9} U {4,5,8} = {1,2,...
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