On the Equivalence Between Regular Languages and Regular
Expressions

Last Updated: October 25th, 2025

1 Introduction

By definition, a language is regular iff it can be recognized by a DFA. Furthermore, in the Nondeterministic
Finite Automata lecture we saw that any language recognized by an NFA can also be recognized by

a DFA. And since every DFA is an NFA, it follows that a language is regular iff it is accepted by an
NFA. In this lecture we show that the set of languages that can be described by a regular expression

is equal to the set of regular languages, which justifies the name of such expressions. We accomplish
this in two steps.

1. We show that every regular expression E may be converted to an NFA that recognizes the
language L(FE) that is described by E. We conclude that any language that can be described
by a regular expressions must be regular. Mathematically we may write

RegEx C Regular.

2. Conversely, we then show how to convert any NFA N to a regular expression E such that
L(N) = L(FE). We then conclude that every regular language may be described by a regular
expression, i.e.

Regular C RegEx.

Putting the two statement together yields

RegEx = Regular.

2 RegEx C Regular

Theorem 1. Let L be a language over some alphabet 3. If L = L(FE) can be described by some
regular expression E, then L is regular.

The proof of Theorem 1 uses structural induction, a technique that is used for proving that the
members of some set of objects all have some property, assuming that the set of objects is recursively
defined.

Example 1. A tree is a special kind of simple graph which is connected and has no cycles. The
following is a recursive definition for the set of all trees.

Base Case A simple graph that consists of a single node is a tree.

Recursive Case If T is a tree, then the graph 7" is also a tree, where 7" is obtained by adding a
vertex v to T as well as the edge (u,v).

Now suppose we want to prove that every tree that has n > 1 vertices must also have exactly n — 1
edges. The following proof of this fact uses structural induction in the following manner.

Basis Step: Every Atomic Tree Has the Property If tree T' consists of a single node, then it
has 1 vertex and 1 — 1 = 0 edges.

Inductive Step: Every Compound Tree Has the Property 1. Let T be any tree that has
n > 1 vertices and n — 1 edges.
2. Let T" be the graph obtained from 7" by adding a vertex v to T" as well as the edge (u,v).

3. Then T" has n + 1 vertices and (n — 1) + 1 = n edges. O

Conclusion All trees must have the property of having one fewer number of edges than vertices.

Proof of Theorem 1. Since the set of all regular expressions over some alphabet was recursively
defined in the previous lecture, we may prove the theorem using structural induction. The following
is an outline of such a proof.

2.1 Every Atomic Regular Expression Describes a Regular Language

Basis Step 1 For each letter a € 3, a is a regular expression that represents the regular language
{a}.

Basis Step 2 ¢ is a regular expression that represents the regular language {¢}.

Basis Step 3 () is a regular expression that represents the regular language .

2.2 Every Compound Regular Expression Describe a Regular Language

Inductive Step 1 If R; and R, are regular expressions and L(R;) is a regular language, i = 1,2,
then (R; U Ry) is a regular expression that represents the regular language L(R1) U L(Ry).

Inductive Step 2 If R; and R, are regular expressions and L(R;) is a regular language, i = 1,2,
then (R; o Ry) is a regular expression that represents the regular language L(R;) o L(Ry).

Inductive Step 3 If R is a regular expression L(R) is a regular language, then (R*) is also a regular
expression that represents the regular language L(R)*.

Example 2. Provide NFA’s that establish the fact that every atomic regular expression describes a
regular language.

2.3 Closure properties of regular languages

To finish the proof of Theorem 1, we must now show that

1. The union of any two regular languages is also regular,
2. The concatenation of any two regular languages is also regular, and

3. The star of any regular language is also regular.

We interpret this by saying that “regular languages are closed under the operations of union,
concatenation, and star”.

Closure under union If NFA’s are equivalent in power to DFA’s, then why bother with them?
The reason is because many regular languages are more easily defined using an NFA. Especially
those languages that are i) a union of two or more regular languages, a concatenation of two regular
languages, or ii) the star of some regular language.

Proposition 1. If A and B are regular, then so is AU B.

Proof of Proposition 1. Suppose NFA M; accepts A and NFA M, accepts B. Then to construct
a state diagram for an NFA N that accepts AU B, do the following.

1. Construct the state diagram for M;, where the node labeled with ¢, is its initial state and Fj
is its set of accepting states.

2. Construct the state diagram for My, where the node labeled with ¢, is its initial state and F3
is its set of accepting states.

3. Add a new node labeled with gy which serves as N’s initial state.
4. Add e-labeled edges (qo, ¢1) and (qo, g2)-

5. Designate any state in F; U Fy as an accepting state for N.

Then, because of the two e-edges (qo,¢1) and (qo, ¢2), a computation of N on input word w results
in a parallel computation of both M; and Ms on w, where the computation accepts iff either an
accepting state of M7 or an accepting state of My belongs to the final subset state. In other words,
we LN)iffwe Aorwe B. O

Example 3. Use the procedure described in the Proposition to construct an NFA that accepts all
binary words that either begin with 0 or end with 1. Show the computation of N on input 101.

Closure under concatenation
Proposition 2. If A and B are regular, then so is Ao B.

Proof of Proposition 2. Suppose NFA N; accepts A, and NFA N, accepts B. Then to construct
a state diagram for an NFA N that accepts A o B, do the following.

1. Construct the state diagram for Vi, where the node labeled with ¢; is its initial state and F}
is its set of accepting states.

2. Construct the state diagram for N5, where the node labeled with ¢s is its initial state and F,
is its set of accepting states.

3. For each ¢ € F; add the e-labeled edge (g, ¢2).

4. Then the initial state for N is g1, and F5 is its set of accepting states.

By adding an e-edge from an accepting state of Ny to ¢o, it allows for N to accept concatenations
of A with B. For example, suppose 1001 is in A, and 0001 is in B. Then the computation of N on
1001 will end with a subset state that not only includes an accepting state of Ny, but also includes
¢2, the initial state of N,. This allows the computation to “start over” and next accept 0001. Thus,
the entire word 10010001 will be accepted by N. O

Example 4. Use the procedure described in Proposition 2 to construct an NFA that accepts Ao B,
where A is the language of all binary words that have a length of at least three, and B is the language
of all binary words that have an odd number of 1’s. Show the computation of the NFA on input
1000101.

Closure under star
Proposition 3. If A is regular, then so is A*.

Proof of Proposition 3. Suppose NFA M accepts A. Then to construct a state diagram for an
NFA N that accepts A*, do the following.

1. Construct the state diagram for M, where the node labeled with ¢y is its initial state and F is
its set of accepting states.

2. Add a new node labeled with ¢ which serves as N'’s initial state.
3. Add the e-labeled edge (g(, qo)-
4. For each ¢ € F, add the e-labeled edge (g, qo)-

5. Designate each state in F' as an accepting state. Also designate ¢ as an accepting state.

Making ¢, an accepting state takes care of accepting input € € A*. Also, by adding an e-edge from an
accepting state of M to qq, it allows for N to accept concatenations of words from A. For example, if
1001 and 0001 are both in A. Then the computation of N on 1001 will end with a subset state that
not only includes an accepting state of M, but also includes gg. This allows the computation to “start
over” and next accept 0001. Thus, the entire word 10010001 will be accepted by N. More generally,
the concatenation of any number of words from A will be accepted by N, and concatenations of
words from A are the only words accepted by N (in addition to €). Therefore, N accepts A*. O]

10

Example 5. Use the procedure described in Proposition 3 to construct an NFA that accepts the
star of the set of all binary words that begin with 00 and have an odd number of 1’s. Show the
computation of the NFA on input 001001.

m
el b <€

=

SGw ;UC')=> ac cept -

11

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Example 6. Provide an NFA that accepts the language described by the regular expression

(000(01 U (11)*)*)*.

—

Do so by following/the following sequence of steps. Construct an NFA that accepts (the langnage
described by) s

1. 000 @ ¢ ‘ ‘ Q—?—Oj
2. 01 Z 5
say | E’/?Q—C;‘O%

4. (01U (11)%)

5. 000((01 U (J1)%)*

—XO
6. (000((01 U (11))*)’ . 1B

When constructing NFA’s that accept unions, concatenations, and stars of NFA’s that you have
already constructed, then use the techniques provided in this lecture and do not simplify the
resulting NFA. Box and label the NFA and use it for any subsequent steps if necessary.

12

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

3 All Regular Languages are Described by Regular Expressions

The converse to Theorem 1 is also true. In other words, we now show that
Regular C RegEx.

Theorem 2. Every regular language L is associated with some regular expression FE, for which
L(E) = L.

Proof of Theorem 1. Let N = (Q, X, 6, qo, F') be an NFA. The goal is to find a regular expression
E such that L(E) = L(N). Without loss of generality, we may assume that i) |F'| = 1 and there is
no transitioning from the sole accepting state q,, and ii) there is no transitioning to initial state g
and gy # q,. Thus N has at least two states.

It turn out that an NFA is a special case of a type of automaton called a generalized nondeterministic
finite automaton (GNFA). The state diagram of a GNFA allows for edges to be labeled with
regular expressions (either atomic or compound), whereas a transition edge of an NFA is only
allowed to be labeled either a finite subset of symbols in X, &, or () (being labeled with) is the
same as having no transition edge going from some state to another). As a consequence, a GNFA is
capable of transitioning from one state ¢; to another ¢ by reading an entire word w € L(E) where
E is the regular expression that labels the edge (q1,¢2) going from ¢; to go. For this reason, a GNFA
computation is similar to that of an NFA computation, with the exception that state transitions are
triggered by an entire word rather than a single symbol.

13

We now use induction on the number of states of GNFA N to prove that L(N) is associated with
some regular expression.

Basis step. GNFA N has two states. Then L(N) equals L(E) where E is the label of the edge
going from ¢y to q,, and so L(N) is associated with regular expression E.

Inductive step. Assume that every GNFA N having k > 2 states accepts a language L(NN) that
is associated with a regular expression E. Now consider a GNFA N having k + 1 states. The idea
is to remove one of N’s states ¢ (¢ # qo and ¢ # q,) so that we may use the inductive assumption.
We may do this so long as we update the regular expressions on each of the remaining edges of our
GNFA'’s state diagram. For example, consider the edge (¢i,¢2) going from ¢; to ¢o before removing
q. Let E denote the regular expression that labels this edge. By removing ¢, we've lost a way to read
a word w € X* that allows us to transition from ¢; to ¢;. Namely, any word w that belongs to the
language associated with the regular expression

E1 OE;OE?”

where F; is the label for edge (¢, q), F> is the label for the loop (g, q), and Ej3 is the label for edge
(¢,q2). In other words w is any sequence of symbols that allows one to transition first from ¢ to g,
then to loop a finite number of times over ¢, followed by transitioning from ¢ to gs. Indeed, if ¢ gets
removed, these words could be lost. For this reason we replace the expression E that labels (g1, g2)

with the new expression
FEuU E1 o E; o Eg.

By doing this, we’ve preserved all the words that allow us to transition from ¢; to ¢o. Moreover, after
removing ¢, the new GNFA N’ now has k states, but still accepts the same language as V. Thus, by
the inductive assumption, we have

L(N) = L(N')

is associated with some regular expression. O]

14

Example 7. Use the proof of Theorem 2 to derive the regular expression that describes the language
accepted by the following NFA.

0,1

15

Administrator
Pencil

Administrator
Pencil

Example 8. Use the proof of Theorem 2 to derive the regular expression that describes the language
accepted by the following NFA.

16

Administrator
Pencil

Equivalence Core Exercises

1. For each of the following regular expressions, provide an NFA that accepts the language
described by the regular expression. Do so by following the provided sequence of steps that is
provided with each expression. When constructing NFA’s that accept unions, concatenations,
and stars of NFA’s that you have already constructed, then use the techniques provided
in this lecture and do not simplify the resulting NFA. Box and label the NFA and use it for
any subsequent steps if necessary. When concatenating two NFA’s make sure to “X out” the
inner circle of any accepting state that is no longer accepting. Please do not erase the inner
circle. Leave it as evidence that the state was previously an accepting state.

(a) a*U(ab)* using the following steps. Construct an NFA that accepts (the language described
by)
i. a”
ii. ab
iii. (ab)*
iv. a* U (ab)*
(b) a(abb)* U b using the following steps. Construct an NFA that accepts (the language
described by)
1. a
ii. (abb)*
iii. a(abb)*
iv. b
v. a(abb)* Ub
(¢) ((aUb*)a*)* using the following steps. Construct an NFA that accepts (the language
described by)
1. a
ii. b*
iii. (aUb")
iv. a*
aUb*)a*
(aUb*)a*)*

v. (

vi. (

2. Provide a DFA M that accepts the same language as that accepted by the NFA N that is
defined in the following state diagram. Do so by defining the states of M to be subsets of the
states of V.

@ a

17

3. Provide a DFA M that accepts the same language as that accepted by the NFA N that is
defined in the following state diagram. Do so by defining the states of M to be subsets of the
states of V.

€

a,b

O

18

Solutions to Equivalence Core Exercises

1. We have the following NFA’s.

(a) We have the following NFA.

(b) We have the following NFA.

(c) We have the following NFA.

19

N

2. We have the following sequence of GNFA transformations.
L

O ()

3. We have the following sequence of GNFA transformations.

20

T
sG-S @)

O\Jﬂ

L ,
2 @O T

e
(EU oo 500@7 &7 % 3 bﬂ
. bg.
L. __\:@; uu\aiaﬁ%%u—& =

21

