Mapping Reducibility

Last Updated: September 4th, 2025

1 Introduction

We now consider the following special kind of Turing reduction from problem A to problem B for
which given problem instance x of A

1. exactly one query is allowed to the B-oracle

2. the answer provided by the B-oracle equals the solution to x.

Because of this we may assume that there exists a computable functio that represents
the query to the B-oracle. In other words, given instance = of A, f(z) represents single query to

B whose answer /solution is the answer/solution for z.

Breaking down the meaning of f: A — B

Function Name f is an identifier that names the function

Domain set A is the set of inputs that one places into f
e T e e

Co-Domain set B is the set of possible outputs to which an input to f can map. Simply put,
x € Ais the input and f(x) € B is the output associated with z.

—_—

In this lecture, in addition to being sets, we also assume that A and B are computational problems.
Remember that a computational problem is a set of situations that all share some common theme.
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Definition 1.1. Problem A is mapping reducible to problem B, written A <,, B, iff there exists
a computable function f : A — B for which the solution to problem instance x of A is equal to the
solution to problem instance f(z) of B.

Notes:

1. The purpose of mapping reduction f : A — B is not to solve an instance x of problem A.
Rather it is to translate = into the instance f(z) of B, where the solution to f(z) (whatever it
may be!) is equal to the solution to x.

2. A special case of a mapping reduction occurs when A and B are decision problems. In this case
f has the property that z is a positive instance of A iff f(x) is a positive instance of B. In other
words, a positive (respectively, negative) instance of A must map to a positive (respectively,
negative) instance of B.

3. Similar to Turing reducibility, if we insist that the algorithm for computing f requires at most
a polynomial number of steps with respect to the size of an instance x, then we say A is
polynomial-time mapping reducible to B and write A <P B.

4. The term map is a synonym for function.


Administrator
Pencil


2 Basic Examples

Example 2.1. We begin with a toy example by considering the two decision problems Even and 0dd
where an instance of either problem is an integer n. Moreover, for Even the problem is to decide if
n is even. Problem 0dd is similarly defined. Then we have Even <,, 0dd via function f(n) =n + 1.
This is true since n is even if and only if f(n) = n 4+ 1 is odd. Thus, the answer to n equals the
answer to f(n). Notice that f also provides a reduction from 0dd to Even.
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Definition 2.2. A W G = (V, E) is an undirected graph for which i) there are no self-loops
and ii) any two vertices have at most one edge that is incident with them.

Cp@z@

1. A set of vertices C' C V is called a clique iff, for every u,v € C, (u,v) € E. In words, every
pair of vertices that belong to C' is joined by an edge.

Definition 2.3. Let G = (V, E) be a simple graph.

2. A set of vertices I C V is called independent iff, for every u,v € I, (u,v) ¢ E. In words,
every pair of vertices that belongs to I is not joined by an edge.

3. For k > 1, a k-clique (respectively, k-independent set) is a clique (respectively, independent
set) of size k.

Example 2.4. What is the largest & for which the graph below has a k-clique (respectively, k-

independent set)? % \ H/ é S ’%

— 4-C\
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Definition 2.5. Given a simple graph G = (V, E), the complement of G, denoted G, is defined as
G = (V, E), where, for all u,v € V|

(u,v) € Eiff (u,v) Q@ £

In words, G and its complement G have the same vertex set, but the edges of G are exactly those
edges that are not edges of GG, and vice versa.

Example 2.6. Given the graph G below, draw G nex
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Definition 2.7. An instance of the Max Clique optimization problem is a simple graph G, and
the problem is to determine the size of the largest clique in G. Similarly, an instance of the Max
Independent Set optimization problem is a simple graph G, and the problem is to determine the
size of the largest independent set in G.

Proposition 2.8. Consider the map f : Simple Graph — Simple Graph, defined by f(G) = G.
Then —_

1. f is a valid mapping reduction from Max Clique to Max Independent Set and

2. f is a valid mapping reduction from Max Independent Set to Max Clique.

Proof of Proposition. We prove statement 1. Statement 2 is similar. Given input graph GG, suppose
that G has a maximum clique C of size k > 1. Then all pairs of vertices in C' are adjacent. Thus, by
definition of G, all pairs of vertices in C' must be non-adjacent in G. Thus, C is a k-independent set
for G. Conversely, suppose that G has a maximum independent set I of size > 1. Then all pairs of
vertices in I are non-adjacent. Thus, by definition of G, all pairs of vertices in I must be adjacent
in G. Thus, [ is an [-clique for G. Therefore, we must conclude that k& = [ and the reduction is
valid. O]

Example 2.9. Verify Proposition 2.8 for the graph G in Example 2.6.

Deg ?re\\img Fm?&
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3 Embeddings

Definition 3.1. An embedding reduction is a kind of mapping reduction for which a problem A
is map reduced to problem B, where A is a special case of B.

As an example, consider a vehicle that has an air-conditioning system that includes the ability to
cool and heat different parts of the cabin, as well as control the flow of air entering and leaving the
cabin. Recall our friend Sam from the Turing Reducibility lecture. Sam and his friends drove to
the Mohave desert where they encountered extreme heat, lots of wind, and some very dusty roads.
While driving, they reduced the problem of cool and clean air to the more general problem of
air conditioning. Moreover, since cool and clean air is a special case of the air conditioning
problem, the reduction simply involved realizing that cool and clean air is embedded into the air-
conditioning system and can be activated by inputting the correct settings.



Definition 3.2. The Subset Sum (8S) decision problem is a pair (.5, ), where S is a set of nonnegative
integers, and ¢ is a nonnegative integer. The problem is to decide if there is a subset A C S whose
members sum to t, i.e., a subset A for which

Za:t.

Example 3.3. Subset Sum instance (S = {3,7,13,19,22,26,35,38,41},t = 102) is a positive
instance of SS since A = {3,7,13,38,41} C S and

3+7+13+ 38 +41 =102.
—_—
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Definition 3.4. An instance of decision problem Set Partition (SP) consists of a set S of positive
integers, and the problem is to decide if there are subsets A, B C S for which

1. AnB =0,
2. AUB =35, and
3.

Za:Zb.

acA beB

In other words, the members of A must sum to the same value as the members of B.

Example 3.5. Show that Set Partition instance

S = {3,14, 19,26, 35, 37, 43, 49, 52}
M = ZS = R1D

is a positive instance of SP.

L\Z/l:_ |24 TE A soms 4, 1239
Then By= S-A sums Yo [39)
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A few moments of thought should convince you that SP is a special case of SS. Indeed given instance
S of SP, if we let M denote the sum of all members of S, then we essentially are seeking a subset A
whose members sum to M/2 since, if such A can be found, then by setting B = S — A, we have all
three conditions met (check this!). Therefore, we may reduce SP to SS via the map

f(9) = (5,t = M)2), (1)
i

SP g5
Just as Sam and his friends don’t care about the heating features of the air-conditioning, when solving

an instance of Set Partition via Subset Sum, we don’t care that Subset Sum can solve a wider
variety of problems involving ¢ values that may not have any relationship with S.

where M is defined as above.

10


Administrator
Pencil


Example 3.6. Given the instance S = {4,8,17,25,34,46,53,59} of Set Partition, provide the
tance of SS to which it reduces via the mapping defined in equation 1.
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Definition 3.7. An instance of the LPath decision problem is a pair (G, k), where G = (V, E) is a
simple graph, and k£ > 0 is a nonnegative integer. The problem is to decide if G has a simple path
of length k, i.e. a path that traverses k edges and visits exactly k + 1 different vertices.

Example 3.8. The following graph, along with & = 4, shows a positive instance of LPath.

12


Administrator
Pencil


Definition 3.9. An instance of the Hamilton Path (HP) decision problem consists of a simple graph
G = (V, E) and the problem is to decide if G has a Hamilton path, namely a path that visits every
vertex in G exactly once.

Example 3.10. The following graph represents a positive instance of HP, with the Hamilton Path

shown in red. H &m;}%\m ?m% o 5): &)C&)\ﬁ)g) C)\QQ)Q
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Once again, it is hopefully evident that HP is a special case of LPath. To see this, note that a simple
graph has a Hamilton path iff it has a simple path of length n — 1 = |V| — 1. Therefore, we may
reduce HP to LPath via the map K Y

f(G) = (G, [V]=1).

i .
5P Sm—%

14
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4 Contractions

As the examples in the previous section suggest, devising an embedding reduction from problem A
only requires knowledge of a problem B that is more general than A and includes A as a special
case. On the other hand, a contraction reduction is a mapping reduction for which problem B is
the special case of problem A. Defining a contraction usually involves some insight and imagination.
Moreover, a contraction reduction demonstrates actual computing progress in the sense that a body
A of problem instances gets effectively reduced to a smaller set B which may improve the chances of
efficiently solving A through the lens of B.

Example 4.1. Contractions are quite common in everyday computing. As an example, consider
a legacy compiler C for some programming language L. Over the years L gets extended with the
addition of new programming constructs that improve the ease of programming in L. We'll call
this extended version Turbo-L. Rather than write a new compiler for Turbo-L, we instead provide
a contraction that is capable of translating any Turbo-L program to an L program, followed by
compiling the L-code with the legacy compiler. O

15



We now provide a contraction reduction f : Subset Sum — Set Partition from Subset Sum to Set
Partition. Let (S,¢) be an instance of SS. Let

M:Zs
sES

denote the sum of all members of S.

Case 1. t = M/2. Then we seek a subset A C S whose members sum to t = M /2, which means that
the complement B = S — A must also sum to ¢t = M/2, since S = AU B. Thus, (5,t) is essentially
a Set Partition problem instance, and so f(S,t) =S = S.

—_—

Case 2. t < M/2. In this case we seek an A C S whose members sum to a value that is less than
one half of the sum of the members of S, which means that (S, t) is not identical to a Set Partition
ce since the member of A will sum to a value that is less than the sum of S — A, i.e.

! M - + S t< M —t.

ti5= Mt = = M‘ZtéP
s S(s)= =50

Moreover, our strategy is to add another member J to S, which gives a new set f(S,t) =5 = SUJ.
What should the value of J equal? We need the equation

t+J=M-—1

to be true, which indeed will be the case assuming J = M — 2t.
Now let’s check our logic to make sure this is a valid mapping reduction.

Assume (S, t) is a positive instance of SS. Then there is a subset A C S which sums to ¢. Moreover,
f(S,t) =5 = SU{J} is a positive instance of SP since both AU {J} and B=5"— (AU {J}) sum
to M —t. Indeed,

t+J=t+(M-2t) =M —t

which equals the sum of the members of S — A= 5" — (AU {J}).

Conversely, assume S’ is a positive instance of SP. That means there are sets A" and B’ that both

sum to
ZSES/ S
2

Without loss of generality, assume that A’ is the set that contains J, then the members of A" — {J}
sum to

= (M +J)/2= (M + (M —2t))/2 = M —t,

M—t—J=M-—t—(M—2t) =

Finally, notice that the members of A" — {J} all belong to the original set S. Therefore, S has a
subset that sums to ¢, and (.5,¢) is a positive instance of SS.

16


Administrator
Pencil

Administrator
Pencil

Administrator
Pencil


Example 4.2. Derive the formula for J in case t > M/2.

b Moy 1T (BETD
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Example 4.3. Use the above reduction to map the following instances of Subset Sum to Set

Partition. f\/\ — 2 @ %(

/
({7,11,2&325,37,39,49,73},:&:51) . Q‘(S)‘)JSS %f SU%%V_ZLS?\S
= SU 71629

1.
2. ({7,11,23,25,37,39,49, 73}, t = 132)
3.

({7,11,23,25,37,39,49, 73}, t = 200) CQ§__Q_’ }/ ﬁ
24 M
Q —6 = )52 -~ \L% = — ¢

- 2 2
£oh)= S

N/
3 t:D\DO > %:\32 :BCG\’;‘L?)

0(a,)s = SUSat-m=
F(SE)= D 20 e
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Definition 4.4. The Vertex Cover (VC) decision problem is the problem of deciding if a simple
graph G = (V, E) has a vertex cover of size k > 0, for some integer k. In other words does G have a
subset C' of k vertices for which every edge e € E' is incident with at least one vertex in C?

Example 4.5. Show that (G, k = 5) is a positive instance of VC, where G is shown below.

Solution. (\

19
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Definition 4.6. The Half Vertex Cover (HVC) decision problem is the problem of deciding if a
simple graph G = (V, E') has a vertex cover of size equal to [V|/2. Note that if G has an odd number
of vertices then it is a negative instance of HVC.

We now provide a contraction mapping f : VC — HVC from Vertex Cover to Half Vertex Cover.
Let (G = (V, E), k) be an instance of VC. Let n = |V].

Case 1. k = n/2. In this case instance (G, k) is essentially an HVC instance since the problem is to
determine if G has a cover of size equal to n/2, i.e. a half cover. Thus f(G, k) = G.

Case 2. k > n/2. In this case we may map (G, k) to an instance of HVC by adding J additional
isolated vertices to G, where

k=-(n+J).

-
From this equation we see that@

To see that this is a valid reduction, suppose that (G, k) is a positive instance of VC. Then f(G, k)
equals G with J = 2k — n isolated vertices added. Since no additional edges are added, the k cover
for G remains a k cover for f(G, k). But it is also a half cover for f(G, k) because k is now one half
the number of vertices of f(G, k). Thus, f(G, k) is a positive instance of HVC.

Conversely, if f(G, k) is a positive instance of HVC, then it has a cover of size
1

and we may assume that none of the added isolated vertices are part of the cover (since they don’t
cover any edges). Hence, G itself has a k cover and (G, k) is a positive instance of VC.

Case 3. </§<\n/2 In this case we have the opposite problem that we faced with Case 2, in that
instance (G, k) involves checking if there is a cover of size less than half the number of vertices of
G. Now when we reduce (G, k) to f(G, k), we still want to add new vertices to G, but now we must
add edges to these vertices in order to force the orginal k£ cover (assuming it exists) to take on a
fraction of 1/2 the total number of vertices in f(G, k). Moreover, the ratio of added edges to vertices
must exceed “1 to 2” since the original ratio of “k to n/2” already falls below the desired “1 to 2”
ratio. One way of achieving this is to add isolated triangles. This works because a triangle has three
vertices but only two are needed to cover its edges. This gives a “2 to 3” ratio which is sufficient for
reaching a half cover so long as we add the appropriate number of triangles. Thus, we must add J

isolated triangles so that
1
@ = —(n+3J).
D"

Solving for J yields It’s left as an exercise to verify that for this case (G, k) is a positive
instance of VC iff f(G, k) is a positive instance of HVC.

20
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Example 4.7. Given VC instance (G, k = 5), where G is shown below, draw f(G, k).

21
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Example 4.8. Given VC instance (G, k = 1), where G is shown below, draw f(G, k).
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Figure 1: An example of a bipartite graph

5 Finding maximum matchings in bipartite graphs

The mapping reducibilities provided in Examples 2.1 and Proposition 2.8 involved pairs of problems
that were in some sense two sides of the same coin. Our next example involves a more subtle
relationship between two seemingly unrelated graph problems, namely the Max Flow problem and
the Maximum Bipartite Matching (MBM) problem. We’ve already encountered the former Section
6 of the Turing Reducibility lecture, and now describe the latter before providing a map reduction
from MBM to Max Flow.

A bipartite graph G = (V1, V5, E) consists of two nonempty disjoing sets of vertices V; and V5 and
a set of edges for which each edge is incident with one vertex in V; and one vertex in V5. Figure 1
shows an example of a bipartite graph, with the V; = {a,b,¢,d,e} and V5 = {1,2,3,4,5}.

A matching M in the graph is a subset M C FE of edges of G, no two of which share a common
vertex. Figure 2 shows a matchiing for the graph in Figure 1.

The following definitions prove useful when discussing matchings in a graph. Let M be a matching.

Maximum Matching M is a called a maximum matching iff for any other matching M’ of G,
M) < M.

Maximal Matching M is called maximal iff it is not contained in any larger matching. In other
words, one cannot increase the size of M simply by adding another edge to M.

23



Figure 2: The red edges form a maximal matching for the bipartite graph.

Matched and Free Edges The edges of M are called matched edges while the edges in £ — M
are called free edges.

Exposed and Covered Vertices Any vertex that is not incident with an edge in M is said to be
exposed by M. otherwise it is covered by M.

Increment Matching M* is called an increment of M iff |M*| = |M|+ 1

Notice that the matching M in Figure 2 is maximal, since no edge can be added to M to increase
its size. Indeed, the only exposed vertices are e and 5, but they are not adjacent. However, M is not
a maximum matching. A maximum matching is shown in Figure 3. This matching is an increment
of M. Finally, MBM is the problem of finding the size of a maximum matching in a bipartite graph.

We now describe a map reduction from MBM to Max Flow. Let G = (Vi, Vs, E) be a bipartite graph.
Then
f(G)=G"= (V' E ¢ s,t),

where the directed network GG/ is defined as follows.

Vertices V' =V, UV, U {s,t}, where s is the source vertex and ¢ is the destination vertex

Edges i) (s,u) € E' for each vertex u € Vi, ii) (v,t) € E’ for each vertex v € V5, and iii) if
e = (u,v) € Eis an edge of G, with u € V] and v € V5, then e = (u,v) € E’ is a directed edge
of G'. Note: such an edge are called an original edge because it also exists in G.

Capacity all edges are assigned unit (i.e. 1) capacity

24
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Figure 3: The green edges form a maximum matching for the bipartite graph.

Figure 4 shows f(G) for the instance G of MBM shown in Figure 1.

Theorem 5.1. The above-described mapping from MBM to Max Flow is a mapping reduction, i.e. G
has a matching of size k iff G’ has a flow of size k.

Proof. Suppose M is a matching for G, with |M| = k. Then there exists a flow fy; on G’ with the
following property. For each edge e = (u,v) € M,

fa(s,u) = fule) = fu(v,t) =1,

and fys(e) = 0 for all other edges e € E’. Figure 5 shows f), for the network G’ = f(G), where G
and M are the respective bipartite graph and matching shown in Figure 2.

To show that fy, is a flow, first note that fy/(e) < 1 and thus fy; never exceeds the unit capacity
limit of e. We now show that each vertex u € V; UV, preserves flow. Without loss of generality,
assume u € V;. Case 1: wu is exposed by M. Then there is no edge e € M that is incident with wu.
Then, by definition of f,;, there is zero flow both entering and leaving u. Case 2: u is covered by M.
Then fu(s,u) =1 and there is unit flow entering u. Also, there is a unique edge e € M for which
e = (u,v), for some v € V,. Thus, fy/(e) =1 and there is unit flow leaving u. Therefore, u conserves
flow. Finally, notice that s(fy) = |M| = k, the size of M.

Now assume G’ = f(G) has a flow f of size k, where k is a nonnegative integer. Based on the
Max-Flow algorithm, we may assume that f(e) is either 0 or 1, for every e € E’. Let M denote the
set of original edges e of G’ for which f(e) = 1. Then we claim that M is a matching for G and that
|M| = k. To see this, since s(f) = k, there are exactly k edges of the form (s, u) for which f(s,u) = 1.
Then for each u for which f(s,u) = 1 there is a unique vertex v, € V5 for which f(u,v,) = 1. This
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Figure 4: The directed network G’ = f(G), where G is the graph in Figure 1.

is because v must conserve flow and there is one unit of flow entering w. It follows then that
M = {(u,vu)|f(s,u) =1

is a matching and that |M| = k. O

When reducing MBM to Max Flow using the mapping defined above, each residual network G} that
results from a flow f through G’ can be easily drawn using the following rule: for each e € F’, if
f(e) = 1, then e is oriented backwards in G';. Otherwise it remains forward oriented. Furthermore,
what we earlier referred to as an augmenting path is now called an alternating path because,
upon leaving s, it has the property of first reaching an exposed vertex in Vi, followed by alternating
between forward and backward edges until it reaches an exposed vertex of V5, and finally reaches t.
Figure 6 shows the residual network G’ = for the network G" and flow fj; showed in Figure 5. Also,
Figure 7 shows an alternating path (in green) for G’ .

Finally, there is a nice way to characterize the increment matching M’ that one obtains from
alternating path P. Namely, M’ = M @& P, where the (edge) set operation M @ P is called the
symmetric difference between M and P and consists of all edges that are either in M but not P,
or in P but not M (here, we neither include the edge that leaves s, nor the one that enters ).
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Figure 6: Residual network G; =~ for graph G" and flow fy; from Figure 5.
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Figure 7: Alternating path (in green) for residual network G’; ~of Figure 6.
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Maximum Matching Algorithm

Input: bipartite graph G.

Output: a maximum matching for G.

Compute f(G) =G = (V' E' ¢, s,t).

Initialize matching M: M < ().

While there is a vertex of G that is exposed by M

If G';, has no alternating path, then return M.
Let P be an alternating path of G, .
M<+—Pao M.

Return M.

The Perfect Bipartite Matching (PBM) decision problem is the problem of deciding if a bipartite
graph G has a perfect matching, i.e. one that covers every vertex of G. For a bipartite graph to
have such a matching, it must be the case that |V;| = |V3|. Moreover, PBM mapping reducible to the
decsion-problem version of Max Flow, where a problem instance is now a network GG and an integer
k, and the problem is to decide if G admits a flow of size k.

28



6 Some Consequences of Reducibility

If we have a reduction (Turing or mapping) from problem A to problem B, what can we infer about
either of the problems? Two things we may be able to learn involve the notions of solvability and
complexity.

We say that, e.g., problem A is solvable iff there is an algorithm that takes as input any instance
x of A and computes the solution to that instance. If no such algorithm exists, then we say that A
is unsolvable. In a lecture we provide examples of several unsolvable problems and techniques for
proving their unsolvability.

Now, assuming A is solvable, the complexity of solving A refers to determining lower bounds on the
amount of memory and/or steps required by any algorithm that solves A. Establishing complexity
bounds for a problem can seem extremely difficult if not impossible, but reducibility can nevertheless
give us some insight with regards to the relative complexity of the problem.

Theorem 6.1. If A <1 B or A <,, B, then the following statements hold.

1. If B is solvable then so is A.

2. If A is unsolvable then so is B.

Proof. Since a mapping reducibility is a special case of Turing reducibility, we may assume A < B.

For the first statement, suppose B is solvable via some algorithm B. Let R denote the algorithm
that Turing reduces A to B by making use of queries to a B-oracle. Note that R may not be a valid
algorithm in the sense with which we are normally familiar. This is so because there may not be an
algorithmic way to obtain the answers to the B-queries that appear in the computation. However,
since B is solvable via B, there is an algorithmic means for obtaining the answers, and we may
replace each query of the form query(b), where b is an instance of B, with a call to algorithm B on
input b. Therefore, R together with algorithm B that is used to answer B-queries may be combined
to define an algorithm in the normal sense.

Finally, notice that the second statement is just the contrapositive of the first, an thus is also a true
statement. 0
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Theorem 6.2. If A <P B, then the following statements hold.

1. If B is solvable in O(p(m)) steps, for some polynomial p, where m is the size parameter for B,

then A is solvable in O(r(n)) steps, for some polynomial r(n), where n is the size parameter
for A.

2. If A cannot be solved in O(r(n)) steps, for any polynomial r(n), then B cannot be solved in
O(p(m)) steps for any polynomial p(m).

Proof. As with Theorem 6.1, the second statement is the contrapositive of the first, and so it suffices
to prove the first. To this end, assume B is solvable in O(p(m)) steps via some algorithm B. Since
A <P B, there is a map f : A — B that is computable in O(¢(n)) steps for some polynomial
q(n), where n is the size parameter for A. Moreover, the solution to instance a of A equals the
solution to instance f(a) of B. Therefore, an algorithm for solving A first computes instance f(a)
via the algorithm that computes f, and then applies algorithm B to instance f(a). Now, since f(a)
is computable in O(g(n)) steps, we may assume that the size of f(a) is m = O(g(n)) bits, i.e. each
algorithm step can construct at most O(1) bits of the output. Thus, B runs on input f(a) whose
size is m = O(g(n)) bits which means the algorithm’s running time is O(p(¢(n))). Thus, the total
running time for solving instance a is

O(q(n)) + p(g(n))) = O(p(g(n))),

and so we may set r(n) = q(p(n)). O
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Example 6.3. Suppose f map reduces A to B and is computable in O(n?®) steps. Furthermore,
suppose algorithm B solves an instance of B in O(m?) steps. Determine the running time of the
following algorithm that solves A.

Algorithm for Solving A

Input: instance a of A.
Output: solution to a.
Compute b = f(a) which is an instance of B.

Return B(b).
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Mapping Reducibility Core Exercises

1. Recall the Even and 0dd decision problems from Example 2.1. Which of the following functions
provides a mapping reduction from Even to 0dd?

a. f(n)=n?
b. f(n)=2n+5
c. fln)=3n—-7

2. Draw the complement of the graph below.

4 @ 6 :

3. The simple graph G = (V, E) shown below is an instance of the Maximum Independent Set
(MIS) optimization problem. Draw f(G), where f maps a graph to its complement. Verify
that the largest clique in G corresponds with the largest independent set in f(G). Similarly,
verify that the largest independent set in G corresponds with the largest clique in f(G).

4. Given the instance S = {16,21,23,25,38,47,61,73} of Set Partition, provide the instance
of 88 to which it reduces via the mapping f(S) = (S,t = M/2). Verify that f is valid mapping
reduction with respect to S.

5. The graph G shown below represents an instance of the Hamilton Path decision problem.
Compute f(G), where f is the mapping reduction from HP to LPath described in Example 3.10.
Verify that the mapping is correct in the sense that the decision for G is equal to the decision
for f(G). Explain.
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10.

11.

12.

For each of the following instances of Subset Sum, show the mapping to Set Partition
provided in lecture. In the case of both a) and b), verify that f is a valid mapping.

a. ({3,7,11,29,44,53,66,81},t = 86)

b. ({3,7,11,29,44,53,66,81},t = 147)

c. ({3,7,11,29,44,53,66,81},t = 177)

Recall the contraction mapping f from VC to HVC. Suppose G = (V, E) is a simple graph with
|V| = 135. Then if f(G,k = 39) = G, then describe the relationship between G’ and G.

Repeat the previous exercise, but now assume |V| = 152 and k& = 100.

The Half Clique decision problem is the problem of deciding if a simple graph G = (V, E) has
a Clique of size |V|/2. Provide an embedding reduction f from Half Clique to Clique.

Provide a contraction reduction f from Clique to Half Clique. Defend your answer, meaning
prove that (G, k) is a positive instance of Clique iff f(G,k) is a positive instance of Half
Clique.

For bipartite graph G = (U, V, E) we have U = {uy, us, us,us}, V= {v1,v2,v3,v4}, and
E = {(Ul, Ul); (U’l; U2>7 (u17v4)7 (u27 Ul)a (UQ,Ug),
(UQ, U4)7 <u37 Ul)a (u37 v3)7 (u47 Ul); (U’47 U3>}‘

a. Draw G.
b. Does G have a (non-maximum) maximal matching M of size 17 size 27 size 37

c. For each yes answer to the previous part, draw the residual network G'fM associated with
the matching, and provide an alternating path P in G’fM. Use the alternating path to find
an increment of M.

At a school ice-cream party there are five dixie cups of ice cream that remain to be served.
Each cup has a different flavor: vanilla, chocolate, cherry, rocky road, and mint and chip.
There are five children who have yet to be served: Abe, Ben, Cris, Dan, and Eva. The ice-
cream preferences of these children are shown below.

Child | Vanilla Chocolate Cherry Rocky Road Mint & Chip
Abe X X X

Ben X

Cris X X

Dan X X

Eva X X

In a rush to get their ice cream, Abe grabbed the cherry, Cris the chocolate, Dan the mint and
chip, and Eva the rocky road. This left Ben with a (vanilla) flavor that he does not like, and
which he refused to eat. Show how the maximum-matching algorithm can be used to increase
the current matching (of four children to four ice creams that they prefer) to a matching of size
five, in which each child will be assigned an ice cream that he or she prefers.

33



Solutions to Mapping Reducibility Core Exercises

1. f:Even — 0dd map reduces Even to 0dd iff it maps evens to odds and odds to evens (why?).

a. f(n) =mn2. No, since f maps evens to evens and odds to odds. For example f(2) = 4.

b. f(n) = 2n + 5. No, since f maps evens to odds, but maps odds to odds. For example,
£3) =11

c. f(n)=3n—"7. Yes. If n is even, then n = 2k for some integer k. Thus

3n—7=312k)—8+1=6k—8+1=23k—4)+1,
which is an odd number. Similarly, if n is odd, 3n — 7 is even.

2. The complement graph is shown below.

0SONO
oR0»0

3. The simple graph f(G) = G = (V, E) is shown below. This is a valid mapping reduction (either
from Max Clique to Max IS or vice versa). To see this, notice that G has a maximum clique of
size 3 (e.g. via vertices 2,3,8), while f(G) has an IS of size 3 using the same vertices. Similarly,
{2,4,5,7} is a max IS for G while the set is also a max Clique for f(G).

4. f(S) = (S,t = 152). f is valid with respect to S since S is a positive instance of SP via set
partition A = {16,25,38,73} and B = {21,23,47,61} while f(S) is a positive instance of SS
via A = {16, 25,38, 73} which sums to t = 152.

5. f(G) = (G,k =n—1) = (G,k = 3). For this instance, the mapping is correct since G is a
negative instance of HP which is equivalent to saying that it does not have a simple path of
length 3. Furthermore G is negative for HP because three of G’s vertices have degree 1, but a
simple path of length three requires at least two vertices that have degree at least 2.

6. For each of the tree cases we have f(5,t) = 5’, where

a. §'={3,7,11,29,44, 53,66, 81,122}
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10.

11.

b. S" = {3,7,11,29, 44, 53,66,81}
c. 8 ={3,7,11,29,44, 53,60, 66,81}

We have that f is a valid reduction for (5,¢) of part a, since, by trial and error, we observe
that no subset of S can sum to ¢t = 86. Similarly, there is no way to partition S’ into sets A
and B with both having the same sum. Also, f is a valid reduction for (S,t) of part b, since
(S,t = 147) is positive for SS via subset A = {3,7, 11,29, 44,53} which sums to ¢t = 147 while
S" is a positive instance of SP since it may be partitioned into A = {3,7,11,29, 44,53} and
B = {66,81}.

. Since k = 39 < 135/2 = 67.5, we have f(G,k = 39) = G’, where G’ is the graph G with the

addition of J triangles, where J satisifes

39+2J 1
135+3J 2

which implies J = 57. Thefore, G’ is the same graph G, but with the addition of 57 distinct
triangles. The addition of these triangles will make it so that G’ has a half vertex cover iff G
has a vertex cover of size 39.

Since k = 100 > 152/2 = 76, f(G,k = 100) = G’, where G’ is the graph G with the addition
of 2(100) — 152 = 48 new isolated vertices.

Let G = (V, E) be a simple graph. Then f(G) = (G, k = |V|/2), i.e. G is a positive instance of
Half Clique iff it has a clique of size |V|/2 iff (G, k = |V|/2) is a positive instance of Clique.

The contraction reduction from Clique to Half Clique is similar to the one given for the
reduction from VC to HVC. Let G = (V, E) be a simple graph and k& > 0 be a nonnegative
integer between 1 and n = |V|. If k = n/2, then f(G,k) = G since (G, k) would then be an
actual Half Clique problem instance. Now suppose k < n/2. Then f(G, k) = G’ where G’ is
formed by adding J additional vertices to G and placing edges between them so that they form
a J-clique C';. Futhermore, we also add an edge between each vertex in C'; and each vertex in
V. Therefore, G will have a k clique iff G’ has a k + J clique. Moreover, this k& + J-clique will
be a half clique for G’ iff

1
k+J:§(n+J)<:>J:n—2k:.

Therefore, we require that J = n — 2k. Finally, if £ > n/2, then f(G,k) = G’ where G’ is
formed by adding J additional isolated vertices to G Therefore, G will have a k clique iff G’
has a k clique. Moreover, this k-clique will be a half clique for G’ iff

1
k=gn+J) e J=2%—n.

a. Below is a graph of G = (U, V, E)
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b. G does not have a size-1 maximal matching since, for any edge e, there is an edge e,
that does not share any vertices with e. However, My = {(u,v1), (ug,v3)} is a maximal
matching of size 2, since u; and uy are the only vertices incident with vy and v4. Then P =
Uy, U1, U1, Uy 1S an alternating path in G/FMQv and M3 = P® My = {(u1,v4), (ug,v1), (uz,v3)}
is a maximal matching of size 3.

%M2 is shown below with an alternating path P drawn in green. This yields increment

Mz =P @ My = {(u1,v4), (ug,v1), (ug,vs) }.
oS0

A
oWio

(+ . \\7}\ ;

3

/

Far, is shown below with an alternating path P drawn in green. This yields increment
My =P & Mz = {(u1,v2), (u2,v4), (u3, v3), (ug, 1) }-
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12. Let G = (U, V, E) be the bipartite graph whose U set represents the set of children, and V' set
represents the set of ice-cream flavors. The (u,v) € E iff child u likes ice cream v. The children
rushing for their ice cream resulted in the matching

M = {(A, Cher), (C, Choc), (D,MC), (E,RR)}.
The residual network G, ~below shows an alternating path P (in green) for which

M* = P& M = {(A,V), (B, Choc), (C,RR), (D, MC), (E, Cher)}.

()
=) _J=)
/

/

(=] (o) (o)
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Additional Exercises

A. An instance of decision problem Set Tri-Partition (STP) is a set of nonnegative integers S,
and the problem is to decide if there exist subsets Ay, Ay, A3 C S for which i) AJUAUA3 =S,
ii) A, NA; =0, for i # j, and iii)

Za:Za:Za.

acAq acAs a€As

Show that the mapping f : STP — SS defined by f(S) = (.5, M/3) where

M:Zs,

ses

is not a valid mapping reduction. Hint: provide a negative instance of STP and show that f
maps it to a positive instance.

B. Recall the mapping reduction that maps a graph to its complement (and was used to show,
e.g., the reducibility of Max Clique to Max IS). Show that the reduction takes a polynomial
number of steps in n = |V| and m = |F|. Do this by writing pseudocode and analyzing the
number of steps taken by the code.

C. Recall the mapping reduction from Subset Sum (SS) to Set Partition (SP) described in
Section 4. Show that this reduction can be computed in polynomial-time by providing a big-O
expression that gives the running time for computing the reduction. Defend your answer.
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Solutions to Additional Exercises

A.

B.

Consider the STP instance S = {6,12}. Then f(S) = (S,k = 18/3 = 6) is a positive instance
of Subset Sum via A = {6}, but S is a negative instance of STP (why?).

Let G = (V,E) be given. Assume that the vertex set is V = {1,2,...,n}. Since G and G
both have ‘the same vertex set, mapping f only has to produce the undirected edges (i, 7) that
belong to F, i.e. those for which i < j and (¢,j) ¢ E. This can be done as follows.

Create hash table T and store the edges of F in T'.
For each i € V,
For each j € V

If ©+ > j, then continue.
If (7,5) € T, then print (i, j).

It takes O(m) steps to create and populate T, and O(n?) steps to iterate through the nested
for-loops. Moreover, we may assume that both table lookup and printing can be done in O(1)
steps. Therefore, the steps required to print the members of £ amount to O(m-+n?) steps which
is a quadratic polynomial in m and n. Therefore, it is a polynomial-step mapping reduction.

The most costly step in the reduction from SS to SP is in the summing of all the members of S
in order to compute M =) _¢s. We may assume that each member of S has not more than
logt bits, since otherwise its value would exceed that of ¢t and thus could never be part of a
subset that sums to ¢. Thus, to compute M we must add n = |S| numbers, each with O(log)
bits. This can be done in no more than O(n? + logt) steps which is a quadratic polynomial in
logt and n. Therefore, it is a polynomial-step mapping reduction.
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