
Undecidability

Last Updated: December 9th, 2025

1 Introduction

In this lecture we look at several problems which cannot be decided by a Turing machine. We call
these problems undecidable. The theory of undecidability has immense applications to computer
science and mathematics. For example, mathematicians had long dreamed of the day when an
algorithm would be developed which, given any multivariate polynomial with integer cofficients,
could determine the integral roots of the polynomial. This is known as “Hilbert’s Tenth Problem”.
In 1970, Yuri Matiyasevich proved that no such algorithm exists by proving that a related problem
is undecidable.

Definition 1.1. A language L over some alphabet Σ is said to be undecidable iff it is not Turing
decidable, meaning that there is no Turing machine M that halts on all inputs, and for which
L = L(M).

1

Encoding a Turing Machine as a Binary Word

Let
M = (Q ⊂ {0, 1, 2, . . .},Σ = {0, 1},Γ = {0, 1,⊔}, δ, q0, qa = 0)

be a Turing machine whose state set Q is a finite set of nonnegative integers, whose input alphabet
is binary, and whose accepting state is 0. We may write M as a word over the alphabet

ΣTM = {0, 1, . . . , 9,⊔, L,R,#, $},

where $ is used to delimit tuples of the δ-transition table, and # is used to delimit components within
a given tuple.

Example 1.2. The following word over ΣTM describes a Turing machine that accepts all binary
inputs having an even number of zeros.

$2#0#3#0#R$2#1#2#1#R$2#⊔#0#⊔#L$3#0#2#0#R$3#1#3#1#R$.

Here we use the convention that i) the initial state q0 = 2 equals the first state of the first tuple, ii)
the accepting state qa = 0, and qr is undefined, in that the machine rejects in case it reaches a state
q with the head reading a symbol s, and for which δ(q, s) is undefined.

In the remainder of this lecture we use the notation ⟨M⟩ to denote the encoding of M as a word over
ΣTM.

2

Administrator
Pencil

1.1 Lexicographical ordering words over an alphabet

Given an alphabet Σ = {a1, a2, . . . , am}, assume an order of the letters so that

a1 < a2 < · · · < am.

Then we may use this ordering to order all words over Σ∗. Let u, v ∈ Σ∗ be two distinct words
over Σ. Then the following rules determine which word precedes the other in what is called the
lecicographical ordering of the words.

1. Shorter words precede longer ones.

2. If |u| = |v|, then let i be the first letter (from left to right) for which ui ̸= vi. If ui < vi, then u
precedes v. Otherwise v precedes u.

Example 1.3. Assuming 0 < 1, the first twelve words in the lexicographical ordering of {0, 1}∗ are

ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100.

Definition 1.4. Let Σ be an alphabet whose letters are ordered. Then for any word w ∈ Σ∗, ϕ(w)
denotes its lexicographical order.

Example 1.5. For the lexicographical ordering of binary words, we have ϕ(ε) = 0, ϕ(10) = 5, and
ϕ(100) = 11.

3

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

The following proposition is left as an exercise.

Proposition 1.6. Given an alphabet Σ = {a1, a2, . . . , am} and a word w = ai1ai2 · · · ain , where

1 ≤ i1, . . . , in ≤ m,

ϕ(w) =
mn − 1

m− 1
+ (i1 − 1)mn−1 + (i2 − 1)mn−2 + · · ·+ (in−1 − 1)m+ (in − 1).

Example 1.7. Use the above formula confirm that i) ϕ(101) = 11 and ii) determine ϕ(11001)
(assuming a binary alphabet).

Solution.

4

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Definition 1.8. Let

M = (Q ⊂ {0, 1, 2, . . .},Σ = {0, 1},Γ = {0, 1,⊔}, δ, q0, qa = 0)

be a Turing machine. Then the Gödel number of M is defined as ϕ(⟨M⟩) with respect to the
lexicographical ordering of words over ΣTM, where the ordering of ΣTM is

0 < 1 < · · · < 9 < ⊔ < L < R < # < $}.

We see that associated with every Turing machine M is the Gödel number ϕ(⟨M⟩). However, not
every natural number is the Gödel number for some Turing machine. In fact, the fraction of numbers
that are Gödel numbers is vanishingly small, meaning that, if we let ε(n) denote the number of
natural numbers that are Gödel numbers and that do not exceed n, then ε(n)/n → 0 as n becomes
increasingly large. However, we wish to associate with every natural number i some Turing machine
Mi. Let M∅ denote the Turing machine whose δ-transition table is empty, meaning that L(M∅) = ∅.
Then the following procedure can be used to define the i th Turing machine Mi, for i = 0, 1,

Input: natural number i ≥ 0.

Output: Turing machine Mi.

If there is a TM M for which ϕ(⟨M⟩) = i then return M .

Return M∅.

5

Administrator
Pencil

The Diagonalization Method

The diagonalization method was first invented by the Russian-German mathematician George Cantor.
Cantor used it to prove that the real numbers are not countably infinite, i.e. cannot be enumerated
in a list. The proof is by contradiction and assumes that the real numbers between zero and one can
be enumerated in a list as x0, x1, x2, . . . xk, Moreover, letting xij denote the j th digit of the i th
real number, we get an infinite matrix (in both rows and columns) of digits. The key idea is to use
the diagonal of this matrix to define a real number y whose i th digit yi is defined as (xii+1) mod 10.
By defining y is this way, we see that y ̸= xi for all i ≥ 0. This is because digit i of y diagrees with
digit i of xi:

yi = (xii + 1) mod 10 ̸= xii.

This contradicts the assumption that all real numbers are in the list. Therefore, the set of real
numbers between 0 and 1 (and hence the set of all real numbers) cannot be enumerated in a list.

The following table demonstrates the diagonalization method with respect to numbers between 0 and
1.

index\nth digit 0 1 2 · · · k · · · Observation
x0 1 → 2 1 7 · · · 4 · · · y0 = 2 ̸= x00 = 1
x1 4 5 → 6 3 · · · 7 · · · y1 = 6 ̸= x11 = 5
x2 8 7 9 → 0 · · · 6 · · · y2 = 0 ̸= x22 = 9
...

...
...

...
. . .

...
...

...
xk 4 1 9 · · · 0 → 1 · · · yk = 1 ̸= xkk = 0
...

...
...

...
...

...
. . .

...

6

Administrator
Pencil

Administrator
Pencil

Our First Undecidable Problem

Let M be a Turing machine whose input words are binary, and let w ∈ {0, 1}∗ be an input to M ,
then we may encode both M and w together as one word, denoted ⟨M,w⟩. One way of doing this is
to append w to ⟨M⟩, i.e.

⟨M,w⟩ = ⟨M⟩ ◦ w.

Using this encoding we may now define the binary language

AcceptTM = {⟨M,w⟩ |M accepts w}.

Theorem 1.9. AcceptTM is undecidable.

Proof. The proof uses the method of diagonalization. With the goal of showing a contradiction,
suppose AcceptTM is decidable via Turing machine D (D stands for Decide). Consider the Turing
machine C (C stands for Contradict) that implements the following program.

Program for Turing Machine C

Input: ⟨M⟩, the encoding of an arbitrary Turing machine M .

Output: accept or rejecting, depending on the computation of D on input ⟨M, ⟨M⟩⟩.

Simulate D on input ⟨M, ⟨M⟩⟩.

If D accepts, then reject.

Else accept.

Notice that, since D halts on all inputs, so does C. Now, what happens when ⟨C⟩ serves as input to
C? In other words, what happens when C computes with its own encoding as input?

Case 1. C accepts ⟨C⟩. By definition of C, this can only happen if D rejects ⟨C, ⟨C⟩⟩ which, by
definition of D, means that C rejects ⟨C⟩, a contradiction.

Case 2. C rejects ⟨C⟩. By definition of C, this can only happen if D accepts ⟨C, ⟨C⟩⟩ which, by
definition of D, means that C accepts ⟨C⟩, a contradiction.

Therefore, our assumption that AcceptTM is decidable viaD must be false, and ATM is undecdiable.

7

Administrator
Pencil

Administrator
Pencil

The following table suggests that the above proof can be understood as another diagonalization
argument. Indeed, the way in which C is defined makes it behave differently than every other Turing
machine Mi, on at least one input: namely, ⟨Mi⟩. But this is impossible, since C is also a Turing
machine, and we are assuming that the list of machines includes all possible Turing machines (e.g.
Mi is the Turing machine with Gödel number i). Then, on input ⟨C⟩, C must behave in the opposite
way in which C would behave on input ⟨C⟩, which is impossible! In other words,

C(⟨C⟩) = 0 ⇔ C(⟨C⟩) = 1,

a contradiction. Therefore, we must assume that C is not well defined. But the only part of C’s
definition that is questionable is whether or not TM D exists, which in turn relies on whether or not
AcceptTM is decidable. Threfore, AcceptTM is undecidable.

TM\input n ⟨M0⟩ ⟨M1⟩ ⟨M2⟩ · · · ⟨C⟩ · · · self accepting?
M0 1 → 0 1 0 · · · 1 · · · yes
M1 ↑ ↑→ 1 0 · · · ↑ · · · no
M2 0 1 1 → 0 · · · 1 · · · yes
...

...
...

...
. . .

...
...

...
C 0 1 0 · · · 0/1 → 1/0 · · · no/yes
...

...
...

...
...

...
. . .

...

Note: in the table ↑ means that the machine does not halt on that input.

8

Administrator
Pencil

Administrator
Pencil

Now suppose that we have a decision problem L1 that is undecidable, we may use it prove that
another decision problem L2 is undecidable as follows.

1. Assume L2 is decidable.

2. Let D be a Turing machine that decides L2.

3. Use D to design another Turing machine C that decides L1.

4. Since L1 is undecidable, the previous step leads to a contradiction.

5. Therefore, L2 is undecidable.

9

Administrator
Pencil

The Halting Problem

An instance of decision problem Halt is a Turing machine M and an input w to M . The problem is
to decide if M halts on input w. More formally,

Halt = {⟨M,w⟩ |M halts on input w}.

Theorem 1.10. Halt is undecidable.

Proof. Assume Turing machine D decides Halt. The following program for Turing machine C
decides AcceptTM.

Input: TM M and word w defined over alphabet Σ, the input alphabet for M .

Output: accept iff M accepts w.

Simulate D on input ⟨M,w⟩.

If D accepts ⟨M,w⟩,

Simulate M on input w.

If M accepts w, then accept.

Else reject.

Else reject.

If D rejects ⟨M,w⟩, then M does not halt on input w, and thus cannot accept w, so C rejects. On
the other hand, if D accepts ⟨M,w⟩, then M halts on input w. Hence, we may simulate M on input
w and be guaranteed that the simulation will terminate. C then accepts iff the simulation of M on
w is accepting.

Therefore, C decides AcceptTM, which contradicts the fact that AcceptTM is undecidable.

10

Administrator
Pencil

Theorem 1.11. The language

EmptyTM = {⟨M⟩ |M is a Turing machine and L(M) = ∅}

is undecidable.

Proof.

Assume Turing machine D decides EmptyTM. The following program for Turing machine C makes
use of D to decided the Halt problem.

Input: Turing machine M and word w over the input alphabet Σ of M .

Output: accept iff M halts on input w.

Construct a Turing machine E that works in the following way. On input v, E erases v and
simulates M on input w, if M halts on input w, then E accepts v. Otherwise E runs forever.

Simulate D on input ⟨E⟩.

If D accepts ⟨E⟩, then reject.

Else accept.

Case 1: assume ⟨M,w⟩ is a positive instance of Halt. Then, when E runs on any input v, E accepts
v since M halts on input w. Thus, L(E) = {0, 1}∗ ̸= ∅, which implies that D rejects E, which in
turn implies that C accepts ⟨M,w⟩.

Case 2. assume ⟨M,w⟩ is a negative instance of Halt. Then when E runs on any input v, E
(implicitly) rejects v since E will run forever on input v. This is because M runs forever on input w.
Thus, L(E) = ∅, which implies that D accepts E, which in turn implies that C rejects ⟨M,w⟩.

Therefore, C decides Halt, which contradicts the fact that Halt is undecidable.

11

Theorem 1.12. The language

EqualTM = {⟨M,N⟩ |L(M) = L(N)}

in undecidable.

Proof. Suppose Turing machine D decides EqualTM. This would imply that EmptyTM is decidable.
Why? Suppose we want to know of some machine M accepts the empty lanugage. Construct a
machine M ′ for which L(M ′) = ∅ (simply make M ′ immediately enter an infinite loop). Then

L(M) = ∅ ⇔ L(M) = L(M ′),

where the latter property can be decided by D. Therefore, since was arbitrary, EnptyTM is decidable
which contradicts Theorem 1.11.

12

