

CECS 528, Homework Assignment 4, Fall 2025, Dr. Ebert

Directions: Please review the Homework section on page 6 of the syllabus including a list of all rules and guidelines for writing and submitting solutions. This includes the statement regarding plagiarism.

Due Date: Saturday, December 13th as a PDF-file upload to the HW6 Canvas dropbox.

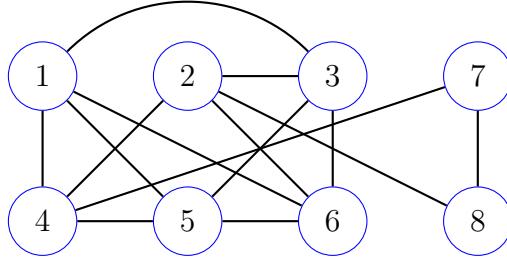
Problems

Note: a total point score of at least 50 is necessary for an LO11 pass. **Show all work for each problem solution.**

1. Do the following.
 - (a) A bag consists of five coins. Three of the coins are two-headed, one is fair (one head and one tail), and the fifth is two-tailed. If three of the coins are randomly selected from the bag and are randomly flipped on to a table, determine the probability that at least two heads will appear. (8 pts)
 - (b) For the experiment described in part a) determine the domain and probability distribution for the random variable $E[H|S]$, where H is the number of heads that appear on the table, and S is the number of two-headed coins that were selected. (7 pts)
 - (c) Compute $E[H]$ in two different ways: i) directly by using only the probability distribution of H and ii) indirectly by using the probability distribution $E[H|S]$. (10 pts)

2. Suppose we apply Karger's algorithm to the graph shown below. Moreover, the edges selected in order are

$$(1, 6), (2, 3), (23, 8), (238, 4), (2348, 5), (16, 23458).$$



- (a) Show the resulting sequence of multigraphs that are formed after each edge selection (10 pts).
- (b) Provide the lower bound proved by Karger for the probability that the algorithm will return a minimum cut. (5 pts)

(c) Compute the actual probability of successfully finding the min cut $\{(4, 7), (7, 8)\}$ conditioned on the random choices of edges that were selected in each round. (10 pts)

3. Consider the problem of applying WalkSAT to a satisfiable instance of 2SAT that has **four** variables and a unique satisfying assignment β . Letting F be the random variable that measures the number of bit flips that leads up to the event $\alpha = \beta$, our goal is to compute an upper-bound for $E[F|D = i]$, $i = 1, \dots, 4$, where D is a random variable that represents the current Hamming distance $d(\alpha, \beta)$. Note that $E[F|D = 0] = 0$.

- Determine upper bounds for the values $E[F|D = 1], \dots, E[F|D = 4]$ by creating a system of recurrences, followed by solving the system. (15 pts)
- Using your answers from part a, compute and upper bound for $E[F]$. Hint, use the Law of Expectation of Conditional Expectation (LECE). (10 pts)