Fast Fourier Transform

Last Updated: September 8th, 2025

1 Introduction

Like Strassen’s algorithm, the Fast Fourier Transform (FFT) is considered one of the more suprising
and interesting known divide-and-conquer algorithms. It finds important use in the field of signal
and image processing but is perhaps best understood as a means for efficiently multiplying two
polynomials which we present in this lecture.

2 Review of Complex Numbers

Definition 2.1. A complex number is a number of the form a-+bi, where a,b € R are real numbers,
and i = v/—1. Here, a is referred to as the real part, while bi is referred to as the complex part. A
complex number is said to be in standard form when written as the sum of its real and imaginary
parts.

Definition 2.2. The conjugate of a complex number a + bi, denoted, a + bi is the complex number
a — bi.



Definition 2.3. Let a + bt and ¢ + di be complex numbers. Then the following are the defined
operations on complex numbers.

Addition (a+bi)+ (c+di) = (a+c)+ (b+d)i
Subtraction (a+ bi) — (c+di) = (a —¢) + (b —d)i

Multiplication (a + bi) - (¢ + di) = (ac — bd) + (ad + be)i

Division (a + bi)/(c+ di) = gﬂfg + g§+‘;‘212 C C
’

The modulus or length of complex number ¢ = a + bi, denoted |c|, is defined as

ol fe = V@I {@urb\}(@ \o\_

With this definition we may rewrite division as

0% a +75

afer = caf?

where ¢y # 0.
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Proposition 2.4. The following are some identities for complex numbers.

Conjugation When viewed as a function that maps complex number ¢ to ¢, conjugation may be
viewed as an automorphism over the field of complex numbers:

c1+c=7¢ +c3and ¢cic; = ¢ - Co.

Euler’s Identity

Exponent Form A complex number is said to be in exponent form when it is written as re?, where
r is its modulus and 6 is its phase. —

Example 2.5. For all integers n.

2nmi

e"™ = cos(2nm) 4 isin(2nr) =1+i-0=1. O

—_— =
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2.1 Roots of Unity

2mig

For each j =0,...,n—1, e » is a complex nth root of unity, meaning that
= e*™ = cos(2mj) + isin(27j) = 1. \

2Ty

- " —\ & %‘Re&

Example 2.6. Determine the complex 4th roots of unity.
Solution. OO = \ "
Q= |
%0 = —\
D) = 1\

2mig
iy

8(

|
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The next proposition shows that e¥, j=0,...,n—1, are the only unique powers of e

Proposition 2.7. If integers j and k satisfy j = k£ mod n, then

2mig 2mik
e n = e n .,

Proof of Proposition. Assume j = k£ mod n. Then k£ = ng + j, for some integer q. Then

- -
/ 2mik 2mi(j+nq) 2mij  2ming 2mig . 2mig 2mig
e n —e n —en e n :@n@%”q:en.]_:en'
SEee—
—~
oy . ; . 2mij
Definition 2.8. For j =0,...,n — 1, w’ denotes the root of unity e » .

= -4
3MCA L st & e

Proposition 2.9. The n th roots of unity form an abelian group under multiplication. In other
words, the following properties hold for all integers 7,7 and k. Note: all exponents and exponent
arithmetic is assumed as mod n arithmetic.

e
S T N kY — . yititk
Associativity (W) -wl) - w; =w! - (w! - wy) = wit*r,

v, i+
n_wn :

Commutative w’ -w/ =w’ - w
Existence of Unit w® =1 and 1w = w!.

Existence of Multiplicative Inverse (w!)™! = w,?, since w! -w,;" = Wi =W’ = 1.
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Example 2.10. For the 6th roots of unity, determine the multiplicative inverse oVerify
\/3 .
72'

your answer by writing the inverse in standard form and multiplying with % +

N[



Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil


Proposition 2.11. The following properties of the roots of unity are essential for the correctness of
the Fast Fourier Transform.

1. If n is even, then w! and —w? are both roots of unity. In other words, roots of unity come in

additive-inverse pairs. Furthermore, if 0 < j < n/2, then Wi = —wi.

2. If n is even, then the squares of the nth roots of unity yield the n/2 roots of unity.

Proof of Proposition.

1. By the sum-of-angle formulas for cosine and sine, we have

e — cos( + ) +isin(f + 1) = — cos @ — sin i = —e?".
Therefore,
. 2mij . 2mij | 2mwi(n/2) 2wi(j+n/2) .
—w% = e( nj+m) = e(TJ—" w) = e ]n = wi["(n/%
— -

which is a root of unity.

2. For 0 < j < n/2, we have
. . 27i(25) 27ij
(wgl)sz'?l‘] — n :e"/27

which is an n/2 root of unity. Note also that, for n/2 < j < n, e s just the negative of w?,
and thus its square yields the same n/2 root of unity as its additive-inverse counterpart.

O
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3 Polynomial Multiplication and the Fast Fourier Transform

Given two polynomials
A(r) = ag + ayx + - - + agz”

and
B(x) = by + byw + - - - + bga?,

our goal is to compute the product C(z) = A(x)B(z) where C(x) is a degree-2d polynomial whose
k th term ¢, k= 0,1,...,d, is computed as

k
Cr — E aibk,i.
=0

Thus, using the above formula we see that computing the first d 4+ 1 coefficients of C(x) requires
142+34+4+--+d+(d+1)=06(d)
steps.

The following algorithm provides an alternative way to compute C(x).

Alternative Polynomial Multiplication Algorithm

Input: Coefficients of polynomials A(z) and B(z).
Output: Coefficients of C(z) :@)B(x)(/

Pick points: xg,x1,...,2T,_1, for some n > 2d + 1.

Evaluate A and B: compute A(xg),. .., A(x,—1) and B(zg),..., B(z,_1).

Evaluate C: compute C(zg) = A(x¢)B(xo),...,C(zpn-1) = A(zp_1)B(xp_1).
—_— O

—

Interpolate: determine the unique coefficients cq, ¢1, . . ., coq for which, for all+ =0,1,...,n—1,
C(x;) = co + c1a; + - - + coqr??.

Return cg, cq, ..., coq.
Notes:

1. On the surface, it appears that this method will also require O(d?) steps, since evaluating a
d-degree polynomial on some input x; generally requires O(d) steps via Horner’s algorithm.

2. Moreover, interpolation also requires O(d?) steps since, as we’ll see, it involves inverting a
2d x 2d Vandermonde matrix.

3. However, by choosing to simultaneously evaluate A (and B) with the nth roots of unity via a
divide-and-conquer approach, we can reduce the total number of evaluation and interpolation
steps to O(nlogn).
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3.1 A Divide and Conquer approach to polynomial evaluation

In what follows we assume that n is a power of two. Consider the polynomial

A(x) = ap + a1z + apx® + -+ ap_1z"
- =
Then A(z) may be written as )
Ax) = Ac(2?) + 24,(2?),
=

where A.(y) and A,(y) are the polynomials

Ae(y) = ao + azy + a4y2 + o+ an—2ynT_27

and _2
Ao(y) =a; + asy + -+ an—lyT‘

Thus, we may evaluate (n — 1)-degree polynomial A(z) by evaluating two ("= 2)-degree polynomials
at 22, In other words, we've taken the problem and divided it into two subproblems, each of which
is one-half the size.

Example 3.1. For

A(r) =<2 5z £ 32° 94+ 2°%- 82° (- 227,

o b A A0 7 <3B\) -2 +gj+ol\3 52%
Ao (9)= 5 ~49+ -2
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Upon examining the formula

Ax) = A (2?) —I—ﬁAo(xz),

in order for the divide-and-conquer strategy to work, the following must be true about the n numbers

x17x27 % %24»?2%\’1

that we use to evaluate A(z).

1. Without loss of generality, we should have x»,; = —ux;, i.e. if x; is in the list, then so is its
additive inverse. Why? Because the answers to A.(z?) and A,(z*) may be used by both z; and
—x;, since 7 = (—x;)%. Thus we only need to evaluate A, and A, a number of times that is
one-half the number of inputs.

2. The first property should (recursively) also hold for x%,x%,...,x%. Why? Because these

numbers will serve as the inputs to the n/2-sized subproblems A, and A, which are the two
subproblems of our divide-and-conquer algorithm. In general, the first property must hold for
any subproblem of any size that occurs as one of the problem instances of the divide-and-
conquer algorithm.

Question. If n is a power of 2, what n numbers occur as additive inverse pairs and whose squares
also occur as additive inverse pairs? You guessed it: the nth roots of unity! See Proposition 2.11.

10
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The above divide-and-conquer algorithm leads us to the following definition.

Definition 3.2. Given complex coefficients ¢y, . .., ¢,_1, let p(z) be the polynomial
n—1
p(z) = chxk :
k=0

Then the nth order discrete Fourier transform is the function

DFTn(COa s 7Cn—1) = (yOa s 7yn—1)7
where y; = p(w’), j=0,...,n— 1.
In words the nth order discrete Fourier transform, takes as input the complex coefficients of a degree
n — 1 polynomial p, and returns the n-dimensional vector whose components are the evaluation of p

at each of the nth roots of unity. Another way to write DF T, (co,...,c,—1) is DFT,(p), where p is
the polynomial of degree n — 1 whose coefficients are ¢, ..., c,_1.

11



Example 3.3. Compute DFT4(0, 1,2, 3).

P(x)= 0+ X3 25 4 3y

DFT, (0,023)= PDPERREY

12
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3.2 Fast Fourier Transform

We may now write our divide-and-conquer algorithm in terms of DFT,,. In what follows we define
(Uly .oy Up) © (V1o Uy) = (U1, .o Upy),

which we call the scaling of v with .

Fast Fourier Transform

1

Input: polynomial A(z) = ag + a1 + asx® + - -+ + a,_12"', where n is a power of two.

Output: DFT, (A).
If n =1, then return (ay).
Yy = DFTx(A,).
Yo = Yy 0 Yy. //Concatenate vector Yy with itself.
—&_’_
Y; = DFTx (A,).
Y1 =Y; 0Y;. //Concatenate vector Y; with itself.
Y1 = w, ©®Y;. //Scale Y7 with the length-n vector of nth roots of unity.
o

Return Yy + Y. //Return the vector sum of Y with ;.

We see that the running time for FFT is ©(nlogn), since its running time satisfies
T(n)=2T(n/2) +n.

Thus, we have found a way to evaluate a polynomial at n points using only a log-linear number of
steps!

13
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Example 3.4. Compute DFT,4(0, 1,2, 3) using the FFT algorithm.

Solution. ’D;{:L U) ]) 2?5 — B
(429"2) 2 VQE‘\J (0 )“\ “\\ /) (% ;2‘) q, ’”23 -
He (6, ‘2—2713-2)%%@ °
DFT, (05 2)= DET(43)=
Coy)+ (L=-No (2 2 ) CH N+ (A0 (253)
(2 ~2 — ((_I 3 ‘”2,3
DT (0)=0 DFT, (2)=2 ©ET, ()=

DET, 3)

14
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4 Solving Interpolation with the Inverse DFT

Returning to the alternative polynomial multiplication algorithm, the FFT algorithm allows us to
compute C(w?!), for each 5 = 0,1,...,n — 1. To finish the algorithm, we must find coefficients
€0, C1, .., Cn_1 for which, for each j =0,1,...,n—1,

Clwh) =co+ ) + -+ w7, CW&CC%KQ:

Furthermore, we can write these n equations in matrix form as follows. Co WVDLH"& *‘\'6\1

£, CorCry s Con

1

C/(wh) L L "
C(wl) wl wp ™Y ‘1
n _ ‘ ‘n n o

n—1 ‘ n—1 (n—1)(n—1)
C(wn ) 1 Wy e N -

Letting F}, denote the n x n matrix in the above equation, we leave it as an exercise to show that its
inverse is

1 1 1
Fil 1 w;l w;l(n—l)
1 D o (= D=)

Thus, for all j =0,1,...,n — 1, we have

1 | .
¢; = —(Clwn) + Clwp)w,” + - + Clwp M, /1),

_— e
Notice that this equation is essentially the evaluation of polynomial
1
—(Clwn) + Clwg)z+ -+ Clwp™a" ™)

on input x = w, 7. This suggests the following definition.

15
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Definition 4.1. Given complex coefficients vy, ..., y,_1, let p(z) be the polynomial

n—1
p(z) = Zykxk
k=0
Then the nth order inverse discrete Fourier transform is the function

DFT,  (yo,. .., Yn-1) = (Co,- -, Cn_1),

where ¢; = Lp(w,7), j=0,...,n— 1.

T

In words the nth order inverse discrete Fourier transform, takes as input the complex coefficients
of a degree n — 1 polynomial p, and returns the n-dimensional vector whose components are the
evaluation of tp(x) at each of the inverses of the nth roots of unity.

16
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4.1 The Inverse Fast Fourier Transform

We may provide a similar divide-and-conquer algorithm for computing DFT, ! which we call the
Inverse Fast Fourier Transform (IFFT).

Inverse Fast Fourier Transform

Input: polynomial A(z) = ag + a1 + asz® + - -+ + a,_12", where n is a power of two.
Output: DFT, *(A).

If n =1, then return (ayp).

Yy = DFT%l(Ae).

Yy = Yy o Yy, //Concatenate vector Yy with itself.

Y, = DFT%I(AO).

Y1 =Yi 0Y;. //Concatenate vector Y; with itself.

21

©® Y1. //Scale Y; with the respective inverses of the nth roots of unity.

(Yo + Y1). //Return the vector sum of Yy with Y.

Notice that in the final line we must scale the vector by 1/2. This is because both DFT%I(AE) and
DFT.'(A,) give the polynomial evaluations divided by n/2. However, we want both to be divided

by n. So we must multiply by n/2 to undo the division by n/2, and then divide by n, which has the
net effect of multiplying by 1/2.

17
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2 >
? (;( \ = X — 4+ D XC
Example 4.2. Compute DFT, (0 1 —1,2) by a) using the definition of DFT} (0 1,—1,2), and b
using the IFFT algorithm on DFT,; (0,1, —1,2).

bFy B <O) = 2\ '*I(‘Q \'*\ (* j>: (E)Zf*q )_)JJL?”%J]<
CDF'T (0) = |1 — -
ﬂl)ﬁy 152\ Q\) \ \@C) 2)2) AXE ‘\)@
»eT, (0, D= DeT? (\)23..

2@07037%1) \\®(~\>\j 93 [(t\\%\)-\@(zzj 3
T7O=0 DTN~ D)=l w (=1

18
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4.2 Summary

DFT,(p) The discrete Fourier transform that evaluates an (n — 1)-degree polynomial p at each of
the nth roots of unity and returns a vector of these evaluations.

FFT An algorithm for computing DF'T,(p) in O(nlogn) steps when n is assumed a power of 2.

DFT;Y(p) The inverse discrete Fourier transform that evaluates an (n — 1)-degree polynomial p at
each multiplicative inverse of each nth root of unity, and returns a vector of these evaluations
scaled by 1. Moreover if the coefficients of p are the values q(w?), g(w}), . .., g(wr™?), for some
(n—1)-degree polynomial ¢, then DFT, ! (p) outputs the coefficients of ¢, meaning that it solves
the problem of polynomial interpolation with respect to q

IFFT An algorithm for computing DFT'(p) in O(nlogn) steps when n is assumed a power of 2.

19



FFT Core Exercises

10.

. Compute DFTy(1, —1,2,4) using the definition.
. Compute DFTy(—1, 3,4, 10) using the definition.

. Compute DFT; (0,0, —4,0) using the definition.

Compute DFT; (2,1 —4,0,1 -+ 7) using the definition.

Use the FFT algorithm to compute DFTy(1, —1,2,4).

. Use the FFT algorithm to compute DFT,(—1, 3, 4, 10).

Compute DFT; (0,0, —4,0) using the definition.

Compute DFT;%(2,1 —i,0,1 + ¢) using the definition.

. Use the IFF'T algorithm to compute DFT;I(O, 0,—4,0).

Use the IFFT algorithm to compute DFT; (2,1 —4,0,1 + 7).

20



Solutions to FFT Core Exercises

1. DFT(1,-1,2,4) = (6, —1 — 57,0, —1 + 57)

2. DFT4(—1,3,4,10) = (16, —5 — 7i, —10, =5 + 74)

3. DFT;%(0,0,—4,0) = (—1,1,—1,1)

4. DFT;*(2,1—14,0,1414) = (1,0,0,1)

5. po(z) =14 2z, DFTy(1 4 22) = (3, —1). Thus,
Yy = (3,-1,3,—1).

Also, p1(z) = —1 + 4z, and DFTy(—1 + 4z) = (3, —5). Thus,

Y; = (3,-5,3,—5).

Furthermore, Y7; < inM gives
Y1 = (3, —5i, —3,51).

Finally, DFT,(1,-1,2,4) =Yy + Y, = (6, —1 — 5¢,0, —1 + 53).
6. po(z) = —1 4 4z, DFTy(—1+ 42) = (3, —5). Thus,
Yo = (3,-5,3,-5).

Also, p1(z) = 3+ 10z, and DFTy(3 + 10x) = (13, —7). Thus,

Y1 = (13,-7,13,-7).
Furthermore, Y7; < inM gives

Y1 = (13, —7i,—13,7i).
Finally, DFT,(—-1,3,4,10) = Yy, + Y, = (16, -5 — 74, —10, =5 + 73).

7. Input (0,0, —4,0) corresponds with polynomial p(z) = —4x2. Moreover,

and

Thus,
1
DFT;*(0,0,—4,0) = Z(_4’4’ —4,4) = (~1,1,-1,1),

and so DFT;*(0,0,—4,0) = (—1,1, —1,1), which corresponds with polynomial —1+2z — %423

21



8. Input (2,1 —14,0,1+ 1) corresponds with polynomial p(z) = 2+ (1 —i)x + (1 +¢)z®. Moreover,

—-1)(0
pluf

~—
I
g
.o~
—
~—
I
N

and
p(wi®) = p(i) =
Thus, DFT; (2,1 —4,0,1 +4) = (1,0,0,1),, which corresponds with polynomial 1 + 2.

9. po(z) = —4z, DFT, ' (—4z) = 1(—4,4) = (=2,2). Thus,
Co=(—2,2,-2,2).
Also, py(7) =0, and DFT,'(0) = (0,0). Thus,
C1 = (0,0,0,0).

Furthermore, C1; < w;j (', gives
C1 = (0,0,0,0).

Finally, DFT,*(0,0, —4,0) = %(CO +Cy) =5(-2,2,-2,2) = (—1,1,—1,1), which corresponds
with polynomial —1 + z — 22 + 23.

1
2

10. po(z) =2, DFT;'(2) = 3(2,2) = (1,1). Thus,
Co=(1,1,1,1).
Also, pi(z) = (1 —4) + (1 + i)z, and DFT; (1 —4) 4+ (1 +4)z) = 1(2,—2i) = (1, —i). Thus,
Cy = (1,—i,1,—).
Furthermore, C1; < w, J Cy; gives
Cy=(1,-1,-1,1).

Finally, DFT; (2,1 —4,0,1+41) = %(Co +C1) = (1,0,0,1), which corresponds with polynomial
1+ a3,

22



Additional Exercises

A.

Prove that for any two complex numbers ¢ and d, cd = ¢d

B. Write the standard form for each of the complex cube roots of unity.

. Write the standard form for each of the 6th roots of unity. Use the standard forms to verify

both parts of Proposition 2.11.

For the 6th roots of unity, determine the multiplicative inverse of each root, and verify that
(a+bi)(a+bi)~! =1 through direct multiplication of the corresponding standard forms.

. Write the standard form for each of the 8th roots of unity. Use the standard forms to verify

both parts of Proposition 2.11.

Let n > 1, d > 0, and k be integers. Prove that wi = w®. This is called the cancellation
rule.

Let n be an even positive integer. Prove that the square of each of the nth roots of unity yields
the n/2 roots of unity. Moreover, each n/2 root of unity is associated with two different squares
of nth roots of unity.

Show that wi/? = —1, for all even n > 2.

For positive integer n and for integer j not divisible by n, prove that

n—1

Jk _
E w® = 0.
k=0
Hint: use the geometric series formula
n—1
a” = )
a—1
k=0

which is valid when «a is a complex number.

Show the sequence of polynomials that are evaluated when evaluating p(z) = 2 — 322 + 5z — 6
using Horner’s algorithm. Use the algorithm to evaluate p(—2).

Show the sequence of polynomials that are evaluated when evaluating p(x) = 22* — 23 + 222 +
3x — 5 using Horner’s algorithm. Use the algorithm to evaluate p(5).

Find the equation of the quadratic polynomial whose graph passes through the points (2, 13),
(—1,10), and (3, 26).

Find the equation of the cubic polynomial whose graph passes through the points (0, —1), (1, 0),
(—1,—4), and (2,5).

23



Solutions to Additional Exercises

A. Let c=a+ bi, and d = e+ fi. Then

cd = (ae — bf) +i(af + be) = (ae — bf) —i(af + be).
On the other hand,
¢d = (a — bi)(e — fi) = (ae — bf) +i(—af — be) = (ae — bf) —i(af + be),

which proves the claim.

B. For j =0,
(27)(0)%
e 3 =1
For j =1,
271 37/
B =—1/24+ —
e /2 + 5
For j =2,
e =—1/2— Q
C. For 53 =0,
(27)(0)%
e 6 =1
For j =1,
2mi 1 \/_
e 6 —= — _—
2 2
For j =2,
s 1 VA
€6 = — 4+ —.
2 2
For 7 =3, _
e =™ = —1.
For 7 =4,
8mi -1 \/_Z
€6 = — — —
2 2
For 7 =5,
w1 /3
e 6 = - — —
2
Notice that, for j =0, 1, 2, wg = —wg’H. For example,
1 3i 1 31
PR LS
2 2 2 2

Finally, computing the squares of each sixth root of unity yields the numbers 1,
=1 _

5 @ which are the third roots of unity.

24



D. We have

“ws =gt )iy m Ty =L
and
wg wp = (—1)(=1) =1
E. For 5 =0,
(27)(0)i
e 3 =1
For j =1,
i \/§ 2
4 = — _—
T
For j =2,
er =i
For j =3,
3mi —\/5 \/52
e 4 = —+—
2 2
For j =4, ’
e =—1
For 7 =5,
5mi —\/5 —\/52
e 4 = — —|—
2 2
For 7 =6, _
e = —j
For j =7,
e = -+ :
2 2
Notice that, for j =0,1,2, 3, wé = —w§+j. For example,

wi=1i=—(—1)=ws.

Finally, computing the squares of each eighth root of unity yields the numbers 1, 7, -1, and —2

which are exactly the fourth roots of unity.

F. By definition,

dk 2midk . 2mik . k
Wy, =€ dn =en =w,.

25



G. For j=0,...,n—1, ‘
(WP =ww =w? = 1/27

where the last equality is due to the cancellation rule from Exercise 6. Thus the square of an
nth root of unity is indeed an n/2 root of unity. Moreover, notice that j ranges from 0 to n— 1.
By definition, when j ranges from 0 to n/2 — 1, we obtain each n/2 root of unity. Then, due to
the cyclic nature of the roots unity, when j ranges from n/2 to n — 1, we once again obtain each
n/2 root of unity. Therefore, each n/2 root of unity w’ /o is the square of exactly two different
j+n/ 2)2.

nth-roots of unity, namely (w /2) and (w,

H. We have, for even n > 2,

WZ/Q 2mi/n)n/2

= el =™ =cosTm+isinm = —1.

[. Using the geometric series formula

n—1

> =
a—1

k=0

we have
—1 n—1

DTEITE

0 k=0

k=
Wit =1 wj-1 1-1
—1

3

= : =0,

wh—1  wh—1
where the first equality is due to the cancellation rule, and the 2nd to last equality is due to
the fact that w; = 1. Notice also that the denominator is not equal to zero, since we assumed
J is not divisible by n; i.e. j # 0 mod n.

J. Po(@ =1, pi(z) = apo(v) =3 =2 =3, pa(x) = api(2) +5 = 2° = 3z + 5, p3(x) = apa(v) — 6 =
23 — 322 + 52 — 6. po(—=2) = 1, pi(=2) = —=2(1) =3 = =5, pa(—2) = —2(=5) + 5 = 15,

ps(—2) = —2(15) — 6 = —36.
K. po(x) =2, p1(x) = apo(x) — 1 =22 — 1, po(x) = ap1(x) +2 = 222 —x + 2, p3(x) = xpa(x) + 3 =
223 — 2%+ 204 3, ps(x) = aps(x) =5 = 22* —2® + 202 + 32— 5. po(5) = 2, p1(5) =5(2)—1 =9,

p2(5) = 5(9) + 2 = 47, p3(5) = 5(47) + 3 = 238, p4(5) = 5(238) — 5 = 1185.

L. We desire a polynomial of the form ¢y +c;x +cx®. The three points imply the following system
of equations.
Co + 201 + 402 =13

Co—CL+Co = 10
co + 3c1 + 9¢co = 26
Solving this system gives the polynomial 5 — 2z + 322.
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M. We desire a polynomial of the form cq + c1x + cox? + c32®. The four points imply the following
system of equations.
Co = -1

Co+01+02+0320
CO—Cl+C2—03:—4
Co+201+402+803:5

Solving this system gives the polynomial —1 + z — 22 + 23.
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