
Recurrence Relations

Last Updated: August 16th, 2025

Introduction

Determining the running time of a recursive algorithm often requires one to determine the big-O
growth of a function T (n) that is defined in terms of a recurrence relation. Recall that a recurrence
relation for a sequence of numbers is simply an equation that provides the value of the n th number
in terms of an algebraic expression involving n and one or more of the previous numbers of the
sequence. The most common recurrence relation we will encounter in this course is the uniform
divide-and-conquer recurrence relation, or uniform recurrence for short.

Uniform Divide-and-Conquer Recurrence Relation: one of the form

T (n) = aT (n/b) + f(n),

where a > 0 and b > 1 are integer constants. This equation is explained as follows.

T (n): T (n) denotes the number of steps required by some divide-and-conquer algorithm A on a
problem instance having size n.

Divide A divides original problem instance into a subproblem instances.

Conquer Each subproblem instance has size n/b and hence is solved (conquered) in T (n/b) steps
by making a recursive call to A.

Combine f(n) represents the number of steps needed to both divide the original problem instance
and combine the a solutions into a final solution for the original problem instance.

For example,
T (n) = 7T (n/2) + n2,

is a uniform divide-and-conquer recurrence with a = 7, b = 2, and f(n) = n2.

1

Administrator
Pencil

Mergesort

The Mergesort algorithm is a divide-and-conquer algorithm for sorting an array of size n of
comparable elements. The algorithm begins by checking if input array a has n ≤ 2 elements. If
so, then a is sorted in place by making at most one swap. Otherwise, a is divided into two (almost)
equal halves aleft and aright. Both of these subarrays are sorted by making recursive calls to

Mergesort. Once sorted, a merge operation merges the elements of aleft and aright into an auxiliary

array. This sorted auxiliary array is then copied over to the original array. Merging requires Θ(n)
steps. Therfore, the uniform divide-and-conquer recurrence that represents the number of steps T (n)
required by the Mergesort algorithm is

T (n) = 2T (n/2) + n,

and we’ll see in this lecture that it yields a growth of T (n) = Θ(n log n).

2

Example 1. Demonstrate the Mergesort divide-and-conquer algorithm on the array

a = 11, 2, 5, 8, 9, 1, 6, 4, 0, 3, 7

and provide a divide-and-conquer recurrence that describes the number of steps required by the
algorithm.

3

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

It should be emphasized that not every divide-and-conquer algorithm produces a uniform divide-
and-conquer recurrence. For example, the Median-of-Five Find Statistic algorithm described in the
next lecture produces the recurrence

T (n) = T (n/5) + T (7n/10) + an,

where a > 0 is a constant. We refer to such recurrences as non-uniform divide-and-conquer
recurrences. They are non-uniform in the sense that the created subproblem instances may not all
have the same size.

The complexity analysis of a divide-and-conquer algorithm often reduces to determining the big-O
growth of a solution T (n) to a divide-and-conquer recurrence. In this lecture we examine two different
ways of solving such recurrences, which are summarized as follows.

Master Theorem TheMaster Theorem provides a solution T (n) to a uniform recurrence, provided
a, b, and f(n) satisfy certain conditions.

Substitution Method The substitution method uses mathematical induction to prove that
some candidate function T (n) is a solution to a given divide-and-conquer recurrence. The
candidate solution is usually obtained by making an educated guess, or by analyzing the
associated recursion tree.

The Master theorem and substitution method represent proof methods, meaning that the application
of either method will yield a growth for T (n) that is beyond doubt.

4

Recursion Trees and The Master Theorem

Master Theorem. Let a ≥ 1 and b > 1 be constants, f(n) a function, and T (n) be defined on the
nonnegative integers by

T (n) = aT (n/b) + f(n). (1)

Then the growth of T (n) can be asymptotically determined under the following assumptions.

1. If f(n) = O(nlogb a−ϵ) for some constant ϵ > 0, then T (n) = Θ(nlogb a).

2. If f(n) = Θ(nlogb a) then T (n) = Θ(nlogb a · log n).

3. If f(n) = Ω(nlogb a+ϵ) for some constant ϵ > 0, and if af(n/b) ≤ cf(n) for some constant c < 1,
then T (n) = Θ(f(n)).

4. If f(n) = Θ(nlogb a logrb n), then T (n) = Θ(nlogb a logr+1
b n)

We prove a relaxed version of the Master theorem by assuming that n is always a power of b, so
that the resulting recursion tree associated with the recurrence in Equation 1 is a perfect a-ary tree.
The more general case when n is not a power of b follows from this theorem with additional work
involving the analysis of the insignificant effects that floors and ceilings have on the growth of T (n).

Lemma 1. Let a ≥ 1 and b > 1 be constants, and let f(n) be a nonnegative function defined on
exact powers of b. Define T (n) on exact powers of b by the recurrence relation

T (n) =

{
Θ(1) if n = 1
aT (n/b) + f(n) if n = bi

for some positive integer i. Then

T (n) = Θ(nlogb a) +

logb n−1∑
j=0

ajf(n/bj).

Proof of Lemma 1. Notice that, since n is a power of b, there are logb n + 1 levels of recursion:
0, 1, . . . , logb n. Moreover, level j, 0 ≤ j ≤ logb n − 1 contributes a total of ajf(n/bj) to the total
value of T (n), while level logb n contributes Θ(1) · alogb n = Θ(nlogba) (see the general recursion-tree
in Figure 1 below). Hence,

T (n) = Θ(nlogb a) +

logb n−1∑
j=0

ajf(n/bj).

QED

5

Administrator
Pencil

Figure 1: The general recursion tree for uniform divide-and-conquer recurrences

Lemma 2. Let

g(n) =

logb n−1∑
j=0

ajf(n/bj),

where a, b, and f(n) are defined as in Lemma 1. Then

1. If f(n) = O(nlogb a−ϵ) for some constant ϵ > 0, then g(n) = O(nlogb a).

2. If f(n) = Θ(nlogb a) then g(n) = Θ(nlogb a · log n).

3. If f(n) = Ω(nlogb a+ϵ) for some constant ϵ > 0, and if af(n/b) ≤ cf(n) for some constant positive
c < 1, then g(n) = Θ(f(n)).

4. If f(n) = Θ(nlogb a logrb n), then g(n) = Θ(nlogb a logr+1
b n)

6

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

The proof of Lemmma 2 makes use of the geometric series formula

k−1∑
j=0

rj =
rk − 1

r − 1
,

as well as the formula
bj logb a = blogb a

j

= aj.

Proof of Lemma 2.

Case 1: f(n) = O(nlogb a−ϵ) for some constant ϵ > 0. Then there exists a constant C > 0 such that,
for sufficiently large n,

g(n) =

logb n−1∑
j=0

ajf(n/bj) ≤
logb n−1∑

j=0

ajC
(n

bj

)logb a−ϵ

= C

logb n−1∑
j=0

aj
nlogb an−ϵ

blogb ajb−jϵ
=

C · nlogb a

nϵ

logb n−1∑
j=0

aj
(bϵ)j

aj
=

C · nlogb a

nϵ

logb n−1∑
j=0

(bϵ)j =
C · nlogb a

(bϵ − 1)

nϵ − 1

nϵ
=

C · nlogb a

(bϵ − 1)
(1− 1

nϵ
) = O(nlogb a).

Case 2: f(n) = Θ(nlogb a). Then there are constant C1 > 0 for which

g(n) =

logb n−1∑
j=0

ajf(n/bj) ≥
logb n−1∑

j=0

ajC1

(n

bj

)logb a

= C1

logb n−1∑
j=0

aj
nlogb a

blogb aj
=

C1 · nlogb a

logb n−1∑
j=0

aj
1

aj
= C1 · nlogb a

logb n−1∑
j=0

1 = C1 · nlogb a logb n = Ω(nlogb a logb n).

Similarly, we may show that g(n) = O(nlogb a logb n). Therefore, g(n) = Θ(nlogb a logb n).

Case 3: f(n) = Ω(nlogb a+ϵ) for some constant ϵ > 0, and af(n/b) ≤ cf(n) for some positive constant
c < 1. Since f(n) is equal to the first term (j = 0) of the sum that addds to g(n), and all terms are
nonnegative, we have that g(n) = Ω(f(n)). Also, we may use induction to prove that, for all j ≥ 0,

ajf(
n

bj
) ≤ cjf(n).

This gives

g(n) ≤ f(n)

logb n−1∑
j=0

cj ≤
(
1− clogb n

1− c

)
f(n)

which implies g(n) = O(f(n)). Therefore, g(n) = Θ(f(n)).

7

Case 4: f(n) = Θ(nlogb a logrb n). Then there is a constant C1 for which

g(n) =

logb n−1∑
j=0

ajf(n/bj) ≥
logb n−1∑

j=0

ajC1

(n

bj

)logb a

logrb(
n

bj
) = C1

logb n−1∑
j=0

aj
nlogb a

blogb aj
(logb n− j)r =

C1·nlogb a

logb n−1∑
j=0

aj
1

aj
(logb n−j)r = C1·nlogb a

logb n−1∑
j=0

(logb n−j)r = C1·nlogb a(logrb n+(logb n−1)r+· · ·+1) ≥

C1 · nlogb a · C · logr+1
b n = Ω(nlogb a · logr+1

b n).

Similarly, we may show that
g(n) = O(nlogb a · logr+1

b n).

Completing the Proof of the Master Theorem

Lemma 1 tells us that T (n) = Θ(nlogb a) + g(n). Thus, by Lemma 2, we have the following for each
of the four cases of the Master Theorem.

Case 1. T (n) = Θ(nlogb a) + O(nlogb a) = Θ(nlogb a).

Case 2. T (n) = Θ(nlogb a) + Θ(nlogb a log n) = Θ(nlogb a log n).

Case 3. T (n) = Θ(nlogb a) + Θ(f(n)) = Θ(f(n)), since in this case we assume f(n) = Ω(nlogb a+ϵ).

Case 4. T (n) = Θ(nlogb a) + Θ(nlogb a logr+1 n) = Θ(nlogb a logr+1 n).

8

Example 2. Determine the order of growth of T (n) for the following recurrences.

1. T (n) = 16T (n/4) + n

2. T (n) = T (n/5) + 20

3. T (n) = 3T (n/4) + n log n

4. T (n) = 2T (n/2) + n log n

9

Administrator
Pencil

Substitution Method

The substitution method is an inductive method for proving the big-O growth of a function T (n)
that satisfies some divide-and-conquer recurrence. It requires that we already have a candidate
function g(n) for representing the growth of T (n). For example, suppose we desire to show that
T (n) = O(g(n)). Then we peroform the following two steps.

Inductive Assumption Assume that T (k) ≤ Cg(k), for all k < n and for some constant C > 0.

Prove Inductive Step Show that T (n) ≤ Cg(n). Do this by replacing any term aT (n/b) of the
recurrence with aCg(n/b), and show that the resulting non-recurrence expression is bounded
above by Cg(n).

Notice that there is no basis step to the above proof method. This is because we only care about the
growth of T (n) for sufficiently large n.

10

Administrator
Pencil

Example 3. Show that if T (n) = 2T (n/2) + 3n, then T (n) = O(n log n).

11

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Example 4. Similarly, show that T (n) = Ω(n log n), where T (n) satisfies the recurrence from
Example 3.

12

Administrator
Pencil

Example 5. Show that if T (n) = 2T (n/2) + n log n, then T (n) = O(n log2 n).

13

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Sometimes it is necessary to add one or more lesser-degree terms to the inductive assumption when
the assumption fails to provide a term that counterbalances the f(n) term of the recurrence. This
happens in cases where f(n) is little-o of the original inductive assumption. For example, instead of
T (k) ≤ Ck2, one could instead use T (k) ≤ Ck2 +Dk in case f(n) is a linear term,
T (k) ≤ Ck2 +D in case f(n) is a constant term, or
T (k) ≤ Ck2 +D log k in case f(n) is Θ(log n), etc..

In all three of the above scenarios, it’s important to note that D can be either positive or negative.
Thus, after algebraic manipulation, a final inequality such as D ≤ −9 is valid. This is true since,
e.g., T (n) = Cn2 − 9 log n = Θ(n2).

14

Example 6. Prove that if T (n) = 2T (n/2) + 7 then T (n) = O(n).

15

Administrator
Pencil

Core Exercises for Recurrences

1. Use the Master Theorem to give tight asymptotic bounds for the following recurrences.

a. T (n) = 2T (n/4) + 1

b. T (n) = 2T (n/4) +
√
n

c. T (n) = 2T (n/4) + n

d. T (n) = 2T (n/4) + n2

2. Use the Master Theorem to show that the solution to the binary-search recurrence T (n) =
T (n/2) + a, where a > 0 is a constant, is T (n) = Θ(log n).

3. Use the Master Theorem to determine the big-O growth of T (n) if it satisfies the recurrence
T (n) = 3T (n/2) + n.

4. Use the Master Theorem to determine the big-O growth of T (n) if it satisfies the recurrence
T (n) = 4T (n/2) + n2 log n.

5. Use the substitution method to prove that T (n) = 2T (n/2)+an, a > 0 a constant, has solution
T (n) = Θ(n log n).

6. Use the substitution method to prove that T (n) = 4T (n/2) + n has solution T (n) = O(n2).

7. Use the substitution method to prove that T (n) = T (an)+T (bn)+n has solution T (n) = O(n),
where a and b are positive constants, with a+ b < 1.

8. Use the substitution method to prove that T (n) = 8T (n/2)− log n has solution T (n) = Ω(n3).

9. Use the substitution method to prove that T (n) = 2T (n/4) +
√
n log n has solution T (n) =

Ω(
√
n log2 n).

16

Solutions to Core Exercises for Recurrences

1. Use the Master Theorem to give tight asymptotic bounds for the following recurrences.

a. Case 1: T (n) = Θ(
√
n)

b. Case 2: T (n) = Θ(
√
n log n)

c. Case 3: T (n) = Θ(n)

d. Case 3: T (n) = Θ(n2)

2. Use Case 2 of the Master Theorem: T (n) = Θ(log n).

3. Use case 1. T (n) = Θ(nlog 3).

4. Use Case 4 of the Master Theorem: T (n) = Θ(n2 log2 n).

5. Assume T (k) ≤ ck log k, for all k < n. Then

T (n) = 2T (n/2) + an ≤ 2c(n/2) log(n/2) + an = cn log n− cn+ an ≤ cn log n

iff c ≥ a. Therefore by induction, T (n) = O(n log n). T (n) = Ω(n log n) is proved similarly.

6. The hypothesis T (k) ≤ Ck2, for all k < n is insufficient, since it leads to the inequality n ≤ 0.
Using T (k) ≤ Ck2 +Dk yields

T (n) = 4T (n/2) + n ≤ 4(C(n/2)2 +Dn/2) + n = Cn2 + 2Dn+ n ≤ Cn2 +Dn ⇔

Dn+ n ≤ 0 ⇔ D ≤ −1.

Therefore, the inequality is established so long as we choose D ≤ −1, and C > 0.

7. Assume T (k) ≤ Ck, for all k < n and some constant C > 0. Then

T (n) = T (an) + T (bn) + n ≤ Can+ Cbn+ n = Cn(a+ b) + n ≤ Cn ⇔

Cn(1− a− b) ≥ n ⇔ C ≥ 1/(1− a− b).

Since a+b < 1, we have 1−a−b > 0, and thus the inequality holds, so long as C ≥ 1/(1−a−b).

8. The hypothesis T (k) ≥ Ck3, for all k < n is insufficient, since it leads to the inequality log n ≤ 0
which is false for n ≥ 2. However, using T (k) ≥ Ck3 +D log k yields

T (n) = 8T (n/2)− log n ≥ 8(C(n/2)3 +D log(n/2))− log n =

Cn3 + 8D log n− 8D − log n ≥ Cn3 +D log n ⇔ 7D log n− 8D ≥ log n ⇔
D(7− 8/ log n) ≥ 1 ⇔ D ≥ 2/7

and n is sufficiently large.

9. Assume T (k) ≥ C
√
k log2 k for all k < n. Then

T (n) = 2T (n/4) +
√
n log n ≥ 2(C

√
n/4 log2(n/4)) +

√
n log n =

C
√
n(log n− 2)2 +

√
n log n = C

√
n log2 n− 2C

√
n log n+ 4C

√
n+

√
n log n ≥ C

√
n log2 n ⇔

2C
√
n log n− 4C

√
n ≤

√
n log n ⇔ C(2− 4/ log n) ≤ 1 ⇔ C ≤ 1/2

and n is sufficiently large.

17

Additional Exercises

A. Draw the recursion tree that results when applying Mergesort to the array 5,−2, 0, 7, 3, 11, 2, 9, 5, 6,
Label each node with the sub-problem to be solved at that point of the recursion. Assume arrays
of size 1 and 2 are base cases. Assume that odd-sized arrays are split so that the left subproblem
has one more integer than the right. Next to each node, write the solution to its associated
subproblem.

B. Write an algorithm for the function Merge that takes as input two sorted integer arrays a and
b of sizes m and n respectively, and returns a sorted integer array of size m+n whose elements
are the union of elements from a and b.

C. Solve the recurrence T (n) = 2T (
√
n) + log n. Hint: Let S(k) = T (2k) and write a divide-and-

conquer recurrence for S(k).

D. Argue that the solution to the recurrence T (n) = T (n/3) + T (2n/3) + an, where a > 0 is a
constant, is T (n) = Θ(n log n), by using an appropriate recursion tree. The verify it using the
substitution method.

E. Use a recursion tree to show that the solution of T (n) = T (n− 1) + n is T (n) = O(n2).

F. Use a recursion tree to solve the recurrence T (n) = T (n− 2) + n2; providing a tight upper and
lower bound.

G. Use a recursion tree to estimate the big-O growth of T (n) which satisifies the recurrence T (n) =
2T (n− 1) + 1.

H. Suppose T (n) and g(n) are positive functions (meaning they output positive values for each
input n ≥ 0) that satisfy T (n) ≤ Cg(n) for all n ≥ k, and some constant C > 0. Prove that
There is a constant C ′ > 0 for which T (n) ≤ C ′g(n), for all n ≥ 0.

I. Suppose f(n) = ns logr n, where s > logb a and r ≥ 0. Show that there exists a positive c < 1
for which

af(n/b) < cf(n),

where we may assume that n is an arbitrary power of b.

18

Administrator
Pencil

Solutions to Additional Exercises

A. We use lr-strings for the addresses of each node. For example, λ denotes the root, while lrr
denotes the right child of the right child of the left child of the root. Then

λ : 5,−2, 0, 7, 3, 11, 2, 9, 5, 6

l : 5,−2, 0, 7, 3 r : 11, 2, 9, 5, 6

ll : 5,−2, 0 lr : 7, 3 rl : 11, 2, 9 rr : 5, 6

lll : 5,−2 llr : 0 rll : 11, 2 rlr : 9

B. //Merges a and b into merged. n= |a|, m = |b|

void merge(int[] a, int n, int[] b, int m, int[] merged)

{

int i=0;

int j=0;

int value_a = a[0];

int value_b = b[0];

int count = 0;

while(true)

{

if(value_a <= value_b)

{

merged[count++] = value_a;

i++;

if(i < n)

value_a = a[i];

else

break;

}

else

{

merged[count++] = value_b;

j++;

if(j < m)

value_b = b[j];

else

break;

}

}

//copy remaining values

if(j < m)

for(; j < m; j++)

19

merged[count++] = b[j];

else

for(; i < n; i++)

merged[count++] = a[i];

}

C. Letting S(k) = T (2k), we then have the divide-and-conquer recurrence

S(k) = T (2k) = 2T ((2k)1/2) + log 2k = 2T (2k/2) + k = 2S(k/2) + k,

which, by the Master Theorem, yields S(k) = Θ(k log k). Finally, letting n = 2k, we have
T (n) = Θ(log n log(log n)).

D. The recursion tree consists of a single branch of length n, where the work done at depth i is
n− i. Hence, T (n) = O(

∑n
i=0(n− i)) = O(n2).

E. The recursion tree consists of a single branch of length n/2, where the work done at depth i is
(n− 2i)2. Hence,

T (n) = Θ(

n/2∑
i=0

(n− 2i)2) = Θ(n3).

F. The recursion tree is a perfect binary tree having depth n. Thus, it has 2n+1 − 1 nodes.
Moreover, since the work at each node is always 1, we see that T (n) = Θ(2n).

G. The recursion tree remains perfect all the way down to depth ⌊log3 n⌋. Moreover, for each depth
i = 0, 1, . . . , ⌊log3 n⌋, the work done at that depth always adds to n. Hence, the total work
(i.e. T (n)) must be Ω(n log n). Also, the longest branch has a depth not exceeding ⌊log 3

2
n⌋.

Moreover, the amount of work at each depth does not exceed n. Hence T (n) = O(n log n).
Therefore, T (n) = Θ(n log n).

H. Let Ci, i = 0, 1, . . . , k − 1, be a constant for which T (i) ≤ Cig(i). Since f(i) and g(i) are both
positive numbers, we know that such a Ci exists. Then choose C ′ = max(C0, . . . , Ck−1, C).
Then T (n) ≤ C ′g(n), for all n ≥ 0.

I. We have
a
(n
b

)s

log
(n
b

)r

= a
(n
b

)s

(log n− log b)r < cns logr n ⇔

a

bs

(
log n− log b

log n

)r

=
a

bs

(
1− log b

log n

)r

≤ a

bs
< c,

and the last inequality is true since s > logb a implies that bs > a and so a
bs

< 1. Therefore,
there does exist a constant c < 1 for which a

bs
< c is true.

20

