

IMPORTANT: READ THE FOLLOWING DIRECTIONS. Directions,

- For each problem, write your solution using **ONE SHEET OF PAPER ONLY (BOTH FRONT AND BACK)**. Write **NAME** and **PROBLEM NUMBER** on each sheet.
- Write solutions to different problems on **SEPARATE SHEETS** of paper.
- It is OK to use the same sheet for parts of different make up problems.

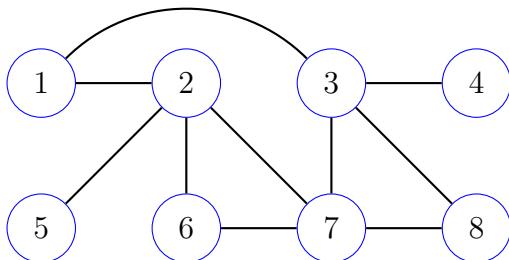
Makeup LO Problems

LO6. Suppose 2SAT instance \mathcal{C} has three variables and, when running the original 2SAT algorithm the answer to each oracle query is shown in the table below. Is \mathcal{C} satisfiable? If yes, provide a satisfying assignment for \mathcal{C} and explain your reasoning. If not, again, explain your reasoning.

Oracle Query	Answer
<code>reachable($G_{\mathcal{C}}, x_1, \bar{x}_1$)</code>	Yes
<code>reachable($G_{\mathcal{C}}, \bar{x}_1, x_1$)</code>	No
<code>reachable($G_{\mathcal{C}}, x_2, \bar{x}_2$)</code>	No
<code>reachable($G_{\mathcal{C}}, x_3, \bar{x}_3$)</code>	Yes
<code>reachable($G_{\mathcal{C}}, \bar{x}_3, x_3$)</code>	No

LO7. Answer the following.

- Provide the definition of what it means to be a mapping reduction from decision problem A to decision problem B .
- For the mapping reduction $f : \text{Vertex Cover} \rightarrow \text{Half Vertex Cover}$, draw $f(G, k)$ for the **Vertex Cover** instance whose graph is shown below, and for which $k = 3$.



- Verify that both (G, k) and $f(G, k)$ are either both positive instances, or are both negative ones. Explain and show work.

LO8. Answer the following.

(a) An instance of the **Complete Coloring** decision problem is a simple graph $G = (V, E)$ and a natural number $k \geq 1$. The problem is to decide if there is a mapping $f : V \rightarrow \{1, \dots, k\}$ such that, for every pair of distinct numbers $i, j \in \{1, \dots, k\}$, there is some edge $e = (u, v) \in E$ for which $f(u) = i$ and $f(v) = j$ (or equivalently, $f(u) = j$ and $f(v) = i$). Such a map is said to provide a **complete k-coloring** of G 's vertices. Note: here we are thinking of the numbers $1, \dots, k$ as representing k distinct colors. To see that **Complete Coloring** is an NP problem we define a certificate for instance (G, k) to be a mapping $f : V \rightarrow \{1, \dots, k\}$. Provide pseudocode for a verifier that, on inputs (G, k) and $f : V \rightarrow \{1, \dots, k\}$, decides if f is a complete k -coloring of the vertices of G . (7 pts) Note: a minimum of 18 points is needed to pass this LO.

(b) Given that $m = |E|$ and $n = |V|$ are the size parameters for the **Complete Coloring** problem and $k \leq n$, provide the big-O number of steps that is required to execute your pseudocode. Your analysis should include any hidden costs (for example, the number of steps needed to check if a pair of vertices represents an edge in a graph depends on the implementation and we cannot just assume it is $O(1)$). (6 pts)

(c) Classify each of the following problems as being in P, NP, or co-NP (3 points each).

- An instance of **Boolean Subset Sum** is a set S of Boolean vectors of some common length, and the problem is to decide if, for each subset $A \subseteq S$, the bitwise OR of the members of A is equal to 1.
- An instance of the **LPath** decision problem is a pair (G, k) , where $G = (V, E)$ is a simple graph, and $k \geq 0$ is a nonnegative integer. The problem is to decide if G has a simple path of length k .
- An instance of **Quadratic Diophantine** is a triple (a, b, c) of positive integers, and the problem is to decide if there is a pair of positive integers x and y for which $ax^2 + by = c$.
- An instance of **Moon Cycle** is a simple graph $G = (V, E)$ and the problem is to decide if G has a cycle of length of either 29 or 30.