
Computability Basics

Last Updated April 10th, 2025

1 Introduction

Goals of Computability Theory include

� studying and comparing various models of computation and the kinds of problems each can
compute

� establishing the computability (or non-computability) of various problems

� establishing important properties and abilities of computer programs, including the existence
of universal programs and programs and self-referencing programs

1

1.1 Models of Computation

Chances are you’ve already encountered several models of computation. Indeed, programming
languages (such as Python, C, Java, Haskell, and PROLOG) are models of computation, as are digital
circuits and CPU’s. However, the study of theoretical computer science tends to benefit from models
of computation that are as simple as possible. This is because theoretical computing problems often
require reasoning about computations of arbitrary programs and so the computation of any program
on some input should seem relatively easy to express. Thus, we desire a model of computation to be
as simple as possible, yet still meet the computing requirements that are assumed by the problem
under investigation. The following are some approaches to achieving a minimalist-style computing
model.

Automata Here, a computation is viewed as a sequence of state changes. A computation begins
with an initial state and a machine has a finite-state controller that determines the next based
on the current state and the current data that is being read. Examples: Finite Automata,
Pushdown Automata, Turing Machines.

Register Machines These models are inspired by the architecture of a CPU where the machine
consists of a finite number of registers along with the ability to perform basic logical and
arithmetic operations on the words stored in each register. Examples: Random-Access Machines
(RAM’s), Unlimited Register Machines (URM’s).

Function Families This approach views the function as the basis for computation and defines rules
for constructing functions that are deemed “computable”. To be in the function family means
to be definable based on the provided rules of construction. Examples: Primitive and General
Recursive Functions, Church’s Lambda Calculus.

Rewriting Systems These models are similar to automata but with both data and state being
combined into a single string of symbols. Examples: Markov Normal Algorithms, Post Production
Systems.

Concurrency These models allow for multiple computation threads to simultaneously occur. Examples:
Boolean and quantum Circuits, Petri Nets, Cellular Automata.

2

This lecture introduces the URM register-machine model. URM’s find use in computability theory
because URM programs are readily encodable as a single integer. Such an encoding is called a Gödel
number and is fundamental to both the study of computability and complexity theory. The URM
is an example of what is called a general model of computation, meaning that it is a model that
is capable of computing any process whose output is obtained in a deterministic step-by-step fashion
with respect to zero or more inputs being fed into the process. Most programming languages, such
as C, Python, and Java, are also considered general models of computation.

In this lecture we assume that the purpose of a URM program is to compute a function that maps
one or more nonnegative integers to a nonnegative integer. In other words, a problem instance is a
vector of natural numbers, while the solution is also a natural number. By making this assumption,
we do not lose any generality since any instance of any discrete computational problem domain can
be encoded with one or more nonnegative integers. Moreover, the natural number output that is
computed can then be decoded back to the original problem domain.

Definition 1.1. N = {0, 1, 2, . . .} denote the set of nonnegative integers.

Unary Function f : N → N means that, for any input x ∈ N , f assigns x to some value f(x) ∈ N .

Multivariate Function For m ≥ 1, f : Nm → N means that for any input vector (x1, . . . , xm) ∈
Nm, f assigns it to some value f(x1, . . . , xm) ∈ N .

In computability theory it’s important to allow for functions that may not be defined on all inputs.

Definition 1.2. A partial function is one that is undefined on zero or more of its inputs. A
function that is defined on all of its inputs is said to be a total function. Note: all total functions
are (technically speaking) partial since they are undefined on zero of their inputs.

Example 1.3. The function f : N → N defined by f(n) equals the value m for which m2 = n is
only defined for n = 1, 4, 9, 16, 25, . . . and is undefined for all other values of n that are not perfect
squares.

3

2 The Unlimited Register Machine

The Unlimited Register Machine (URM) first introduced by Shepherdson and Sturgis (See
Chapter 2 of Nigel Cutland’s “Computability”). The purpose of a URM is to compute an m-ary
function f : Nm → N , from the set of m-tuples of nonnegative integers to nonnegative integers.

To begin, a register is a memory component that is capable of storing a nonnegative integer of
arbitrary size. Registers form the basis of URM’s. Indeed, a URM M consists of

1. r registers R1, . . . , Rr,

2. a finite program P = I1, . . . , Is consisting of s instructions that are used for step-by-step
manipulation of the registers, and

3. a program counter, denoted pc, that stores the index of the next program instruction to be
executed.

A URM M takes as input m nonnegative integers x⃗ = x1, . . . , xm, performs a computation on this
input, and outputs a nonnegative integer, denoted M(x⃗), that is ultimately stored in register 1.

Definition 2.1. A machine configuration for an r-register URM is an (r + 1)-dimensional tuple
whose first r components equal the integers currently stored in registers R1, . . . , Rr, and whose final
component, called the program counter (pc), is the index of the next instruction.

Initial Configuration The initial configuration is

σ0 = (x1, . . . , xm, 0, . . . , 0︸ ︷︷ ︸
r−m

, 1),

where (x1, . . . , xm) is the URM input vector.

Final Configuration A final configuration is any configuration whose program counter exceeds
s = |P |.

Computation A computation ofM on input x⃗ is a (possibly infinte) sequence of machine configurations
σ0, σ1, . . . for which

1. σ0 is the initial configuration

2. σk+1 is obtained from σk by executing instruction Ii, where i is the value of σk’s program
counter pc, and updating the value of M ’s registers accordingly.

We writeM(x⃗) ↓ (respectively,M(x⃗) ↑) in case the computation ofM on input x⃗ is finite (respectively
infinite).

4

2.1 URM Instruction Set

The following is a description of the different types of URM instructions, and how each affects the
current machine configuration.

Zero Z(i), 1 ≤ i ≤ r, assigns 0 to register Ri: Ri ← 0.

Sum S(i), 1 ≤ i ≤ r, increments by 1 the value stored in Ri: Ri ← Ri + 1.

Transfer T(i, j), 1 ≤ i, j ≤ r, assigns to Rj the value stored in Ri: Rj ← Ri.

Jump J(i, j, k), 1 ≤ i, j ≤ r, 1 ≤ k ≤ s, has the effect of setting pc to k in case Ri and Rj store the
same integer. Otherwise pc is incremented by one.

5

Example 2.2. Consider a URM M with r = 3 registers and the following program.

I1. J(1, 2, 6)

I2. S(2)

I3. S(3)

I4. J(1, 2, 6)

I5. J(1, 1, 2)

I6. T (3, 1)

The following is the sequence of configurations produced by the computation M(9, 7).

σi R1 R2 R3 pc Instruction
0 9 7 0 1 J(1,2,6)
1 9 7 0 2 S(2)
2 9 8 0 3 S(3)
3 9 8 1 4 J(1,2,6)
4 9 8 1 5 J(1,1,2)
5 9 8 1 2 S(2)
6 9 9 1 3 S(3)
7 9 9 2 4 J(1,2,6)
8 9 9 2 6 T(3,1)
9 2 9 2 7 n/a

What function is being computed? It is worth noting that the above program is said to be standard
form since since the computation will always terminate with the program counter at s+ 1, where s
is the number of instructions. A program is not in standard form in case the program counter can
ever be assigned a value that exceeds s+ 1.

6

Definition 2.3. An m-ary function f : Nm → N is URM-computable iff there exists a URM M
for which, for all x⃗ ∈ Nm,

1. if f(x⃗) is defined, then M(x⃗) = f(x⃗), and

2. if f(x⃗) is undefined, then M(x⃗) ↑.

If f is defined on all inputs, then it is called total URM-computable. Otherwise, it is called
partially URM-computable. Note: when we say a function is partially computable, it still may be
possible that it is total computable. In other words, totally computable implies partially computable,
but the converse is not necessarily true.

Example 2.4. Show that the function f(x, y) = x+ y is URM-computable.

Solution.

7

Example 2.5. By designing an appropriate URM M , show that the function

f(x) =

{
⌊x/2⌋ if x is even
↑ otherwise

is URM-computable. Show the computations M(2) and M(3).

Solution.

8

Definition 2.6. We have the following definitions.

1. A predicate function is any function f : Nm → {0, 1} whose output values are either 0 or 1.

2. A total predicate function is said to be URM-decidable iff there is a URM program that
computes (i.e. decides) f .

3. A total unary predicate function is often referred to as a “property of the nonnegative integers”.

Example 2.7. The property of being even can be represented by the function

Even(x) =

{
1 if x mod 2 = 0
0 otherwise

Example 2.8. Provide a URMM that proves that the predicate function Even(x) from the previous
example is URM-decidable.

Solution.

9

3 The Church-Turing Thesis

Notice that, in theory, a human is capable of simulating a URM program. This is because, for
any program P and input y to P a human is capable of maintaining a configuration vector for the
computation of P on input y by successively updating the vector in accordance with the demands
of the current instruction. For example, to perform an update on the configuration vector c⃗, the
human first checks if the value i stored in the program-counter component exceeds the number of
instructions of P . If yes, then the computation has ended and c⃗ is the final configuration. In this
case the human outputs the value currently stored in c⃗’s first component. On the other hand, if c⃗ is
not a final configuration, the human inspects instruction Ii and updates c⃗ accordingly. For example,
suppose the instruction is S(5). Then the human adds 1 to register R5 (i.e. the fifth component of
c⃗) and increments the program counter by adding 1 to the final component of c⃗.

The observation that a human is capable of simulating a URM program and the fact that mathematicians,
such as Alan Turing and Alonzo Church, discovered that seemingly disparate models of computation
were yielding the same set of computable functions, it led to the following famous informal thesis.

Church-Turing Thesis. Any function f : Nm → N that can in theory be computed in a
deterministic step-by-step manner by a human using pencil and paper is URM computable.

Although the Church-Turing Thesis cannot be formally proved, evidence that supports it includes the
fact that several different models of computation (e.g. URM’s, Turing machines, Church’s Lambda
Calculus, all procedural programming languages used in practice, to name a few) have all proven to
be equivalent, in that they compute the same set of functions.

The thesis allows us to let our creative imaginations run wild when devising an algorithm and, so
long as we are able to describe how the algorithm works in a deterministic step-by-step manner, we
may assume that it can be programmed by a URM or any other equivalent model of computation.

10

4 Encoding and Decoding URM Programs

Definition 4.1. The function LP(x, y) outputs the largest power of y that divides evenly into x > 0,
and equals 0 in case x = 0.

Example 4.2. We have LP(28, 2) = 2 since 22 | 28, but 23 ̸ | 28.

Theorem 4.3. The following statements are all true.

a. Binary encoder π(x, y) = 2x(2y+1)−1 is a bijection (i.e. one-to-one correspondence) between
N 2 and N .

b. Binary decoders π1(z) and π2(z), where π1 and π2 satisfy

π(π1(z), π2(z)) = z

for all z ∈ N , where π1(z) = LP(z + 1, 2), and π2(z) = ((z + 1)/2π1(z) − 1)/2.

c. Ternary encoder ξ(x, y, z) = π(π(x, y), z) is a bijection between N 3 and N .

d. Ternary decoders ξ1(w), ξ2(w), and ξ3(w) where ξ1 = π1(π1(w)), ξ2 = π2(π1(w)), and ξ3 =
π2(w) satisfy

ξ(ξ1(w), ξ2(w), ξ3(w)) = w

for all w ∈ N .

e. k-tuple encoder τ :
⋃
k≥1

N k → N is a bijection between the set of all tuples of natural numbers

and N , where

τ(a1, a2 . . . , ak) = 2a1 + 2a1+a2+1 + · · ·+ 2a1+a2+···+ak+k−1 − 1.

Notice that τ encodes tuples of all sizes.

f. k-tuple decoder k(x) gives the dimension of the tuple t for which τ(t) = x. In particular,

k(x) =

⌊log x⌋+1∑
i=0

[(x+ 1)/2i mod 2].

In words, it’s the number of nonzero bits of x+ 1, when expressed in binary.

g. k-tuple decoder c(x, i) gives the ith exponent of the powers-of-two expansion of x + 1. In
particular, for 1 ≤ i ≤ k(x),

c(x, i) = min
j≥0

(

j∑
r=0

[⌊(x+ 1)/2r⌋ mod 2] = i).

h. k-tuple decoder a(x, i) gives the ith component of the tuple t for which τ(t) = x. In particular,
a(x, 1) = c(x, 1) and, for 2 ≤ i ≤ k(x), a(x, i) = c(x, i)− c(x, i− 1)− 1.

11

4.1 Decoding tips

Most practitioners will agree that decoding can seem somewhat more challenging than encoding.
Whether performing a binary, ternary, or general tuple decoding of a number. The following are
some useful tips.

Add 1 Remember to first add 1 to the number being decoded.

Binary Decoding of z Write z + 1 as

z + 1 = 2x · (2y + 1).

Then π1(z) = x and π2(z) = y.

Ternary Decoding of w Follow these steps.

1. Perform binary decoding of w (see above). In this case ξ3(w) = y.

2. Binary decode x to obtain ξ1(w) = π1(x) and ξ2(w) = π2(x).

General Tuple Decoding Follow these steps.

1. Write x+ 1 as a power-of-two sum:

x+ 1 = 2c(x,1) + · · ·+ 2c(x,k),

where 0 ≤ c(x, 1) < · · · < c(x, k) and k = k(x) equals the number of terms in the sum.

2. Then a(x, 1) = c(x, 1) and a(x, i) = c(x, i)− c(x, i− 1)− 1, for all i = 2, . . . , k.

12

Example 4.4. Compute π(3, 4), π1(29), ξ(3, 2, 1), ξ1(30), ξ2(30), ξ3(30), τ(1, 4, 0, 2), τ
−1(49), k(42),

c(2, 42), and a(2, 42).

Solution.

a.
π(3, 4) = 23(2(4) + 1)− 1 = 71.

b. For π1(29) we have
29 + 1 = 30 = 21 · (2(7) + 1),

which yields π1(29) = 1 and π2(29) = 7.

c.
ξ(3, 2, 1) = π(π(3, 2), 1) = π(39, 1) = 239(2(1) + 1)− 1 = 239 · 3− 1.

13

d. Since ξ3(30) = π2(30) we first binary-decode 30 as

30 + 1 = 31 = 20 · (2(15) + 1,

which gives ξ3(30) = 15. Now, to obtain ξ1(30) and ξ2(30), we must binary decode 0 as

0 + 1 = 20(2(0) + 1),

which gives ξ1(30) = 0 and ξ2(30) = 0.

e.

τ(1, 4, 0, 2) = 21 + 21+4+1 + 2(1+4+1)+0+1 + 2(1+4+1+0+1)+2+1− 1 = 21 + 26 + 27 + 210− 1 = 1217.

14

f. For τ−1(49),
49 + 1 = 50 = 25 + 24 + 21 = 21 + 24 + 25

which means τ−1(49) = (1, 2, 0). This is because a(49, 1) = c(49, 1) = 1 is the first power-of-two
exponent, a(49, 2) = c(49, 2)−c(49, 1)−1 = 4−1−1 = 2, and a(49, 3) = c(49, 3)−c(49, 2)−1 =
5− 4− 1 = 0.

g. For the final three parts, first compute τ−1(42),

42 + 1 = 43 = 25 + 23 + 21 + 20 = 20 + 21 + 23 + 25

which means τ−1(42) = (0, 0, 1, 1). Since,

a(42, 1) = c(42, 1) = 0, a(42, 2) = c(42, 2)− c(42, 1)− 1 = 1− 0− 1 = 0,

a(42, 3) = c(42, 3)−c(42, 2)−1 = 3−1−1 = 1, and a(42, 4) = c(42, 4)−c(42, 3)−1 = 5−3−1 = 1.

Therefore, k(42) = 4, c(42, 2) = 1, and a(42, 2) = 0.

15

5 Encoding and Decoding URM Programs

We now use Theorem 4.3 to show a bijection β : I → N between the set I of all possible URM
instructions and N . Indeed, β is defined by the following rules.

β(Z(n)) = 4(n− 1),

β(S(n)) = 4(n− 1) + 1,

β(T (m,n)) = 4π(m− 1, n− 1) + 2,

and
β(J(m,n, q)) = 4ξ(m− 1, n− 1, q − 1) + 3.

Example 5.1. Compute β(Z(3)), β(S(4)), β(T (1, 2)), and β(J(1, 2, 7)).

Solution.

β(Z(3)) = 4(2) = 8.

β(S(4)) = 4(3) + 1 = 13.

β(T (1, 2)) = 4π(0, 1) + 2 = 4(20(2(1) + 1)− 1) + 2 = 10.

β(J(1, 2, 7)) = 4ξ(0, 1, 6) + 3 = 4π(π(0, 1), 6) + 3 = 4π(2, 6) + 3 = 4(22(2(6) + 1)− 1) + 3 = 207.

16

We now use β above and τ from Theorem 4.3 to define bijection γ : P → N between the set of all
URM programs P and N . Indeed, given URM program P = I1, . . . , Is, then

γ(P) = τ(β(I1), . . . , β(Is)).

Example 5.2. Calculate γ(P), for P = T (1, 3), S(4), Z(6).

Solution.

We have β(T (1, 3)) = 4π(0, 2) + 2 = 18,

β(S(4))) = 4(3) + 1 = 13, and

β(Z(6)) = 4(5) = 20.

Hence,
γ(P) = τ(18, 13, 20) = 218 + 232 + 253 − 1 = 9007203549970431.

17

Example 5.3. Determine the program P for which γ(P) = 4127. In other words, compute γ−1(4127).

Solution. We have
(4128)2 = 1000000100000 = 25 + 212

which implies P has two instructions I1 and I2, where β(I1) = 5 and β(I2) = 6. Moreover, since
5 mod 4 = 1, we have I1 = S(2), and since 6 mod 4 = 2, I2 is a transfer function T (m,n) where
4π(m − 1, n − 1) + 2 = 6, which means π(m − 1, n − 1) = 1. Thus, m = 2, n = 1. Thefore,
P = S(2), T (2, 1).

18

5.1 Gödel numbers and indices

The following notation will prove useful for the remaining lectures on computability.

Pa denotes the program P for which γ(P) = a. Number a is called the Gödel number of P .

ϕ
(n)
a denotes the n-ary function computed by URM program Pa.

W
(n)
a denotes the domain of ϕ

(n)
a , i.e.

W (n)
a = {(x1, . . . , xn)|Pa(x1, . . . , xn) ↓}.

E
(n)
a denotes the range of ϕ

(n)
a , i.e.

E(n)
a = {y|ϕ(n)

a (x1, . . . , xn) = y for some tuple input (x1, . . . , xn)}.

Note that the superscripts in the above definitions are dropped in case n = 1. For example, ϕ10

denotes the unary function computed by URM program P10. In such cases, Wa will denote a set of
natural numbers rather than 1-tuples.

Example 5.4. Use the previous example and the above definitions to describe ϕ4127, W4127, and
E4127.

Solution.

We say that a ∈ N is an index for computable function f(x) iff f(x) = ϕa(x). Moreover, since an
infinite number of programs can be defined for computing the same function, it follows that every
computable function f has infinitely many indices, and that f will appear infinitely many times
within the sequence ϕ0, ϕ1,

19

Example 5.5. Repeat the previous example but now use Gödel numbers e1 and e2, where Pe1 is the
program from Example 2.5 and Pe2 is the program from Example 2.8.

20

6 The S-M-N Theorem

Given a computable function f(x, y), each fixed integer x0 induces a computable unary function
g(y) = f(x0, y). Thus, f(x, y) spawns an infinite number of computable functions by fixing its first
input in different ways. Moreover, the s-m-n theorem states that these functions are related in a
uniform way.

Simplified S-M-N Theorem. Given a computable function f(x, y) there exists a total URM
computable function h(x) for which

f(x, y) = ϕh(x)(y).

In other words, when x = x0 is fixed, h(x0) represents the Gödel number of a program that computes
g(y) = f(x0, y).

Proof. Let x be given. Let P = I1, . . . , Is be a URM program for computing f(x, y). Letting x ∈ N
be arbitrary, consider the following URM program Px for which Px(y) = f(x, y).

1. T (1, 2) //transfer input y to R2

2. Z(1)

3. S(1), . . . , S(1)︸ ︷︷ ︸
x times

//place x in R1

4. I1, . . . , Is //compute f(x, y)

Letting h(x) denote the Gödel number of this program, it is an exercise to show that h(x) can be
written as an arithmetic (and hence URM computable) function using the encoding functions from
Section 4. Moreover, we have

f(x, y) = ϕh(x)(y),

and the theorem is proved.

General S-M-N Theorem. Given ϕ
(m+n)
s (x⃗, y⃗), where x⃗ and y⃗ are respectivelym and n-dimensional,

there exists a total computable function h(s, x⃗) for which

ϕ(m+n)
s (x⃗, y⃗) = ϕ

(n)
h(s,x⃗)(y⃗).

21

Example 6.1. Consider the function f(x, y) = x+ y which is computable via the following program
P .

1. J(2, 3, 5)

2. S(1)

3. S(3)

4. J(1, 1, 1)

The following table shows g(y) and h(x) for the first few values of x. Here, h(x) provides the index of
a function ϕh(x)(y) that computes g(y). Moreover h(x) is obtained by computing the Gödel number
of the following program.

1. T (1, 2)

2. Z(1)

3. S(1), . . . , S(1)︸ ︷︷ ︸
x times

4. J(2, 3, 8)

5. S(1)

6. S(3)

7. J(1, 1, 4)

The Gödel number of the above program is

h(x) = τ(10, 0, 1, . . . , 1︸ ︷︷ ︸
x times

, 30719, 1, 9, 0) =

210 + 212 + · · ·+ 210+2x + 230730+2x + 230732+2x + 230742+2x + 230743+2x − 1.

x g(y) Index h(x) for g(y)
0 g(y) = 0 + y = y h(0) = 210 + 230730 + 230732 + 230742 + 230743 − 1
1 g(y) = 1 + y h(1) = 210 + 212 + 230732 + 230734 + 230744 + 230745 − 1
2 g(y) = 2 + y h(2) = 210 + 212 + 214 + 230734 + 230736 + 230746 + 230747 − 1
...

...
...

x g(y) = x+ y h(x) = 210 + 212 + · · ·+ 210+2x + 230730+2x + 230732+2x + 230742+2x + 230743+2x − 1
...

...
...

Notice that h(x) is an arithmetic function, and thus total computable by the Church-Turing thesis.

22

Example 6.2. Use the S-M-N theorem to prove that there is a total computable function h(b) for
which

ϕb(x) = ⌊logb x⌋,

where we assume that
log0 x = log1 x = 0

for all natural numbers x, and logb 0 = 0, for all b ≥ 2.

7 Universal Programs

Consider the function ψU(x, y) = ϕx(y). This function takes as input a Gödel number x, along with
a natural number y, and returns the output that program Px produces when supplied input y. Thus,
we see that ψU(x, y) embodies all possible computations of all possible programs, since its first input
x can represent any program and its second input y can represent any input to the program.

We now establish that universal programs exist by invoking the Church-Turing thesis. Indeed, to
compute PU(x, y) we execute the following steps.

1. Decode x to obtain URM program Px and examine the instructions to obtain the maximum
register index n that is used by Px, as well as the number of instructions s possessed by Px.

2. Let c0 = (y, 01, . . . , 0n−1, pc = 1) denote the initial configuration of Px(y).

3. While pc ≤ s,

(a) Execute Ipc and update the current configuration of Px(y).

4. Return the value of the first register of the current configuration.

Note that implementing the above algorithm with a URM requires moving from one configuration
encoding to the next configuration encoding, since the URM that computes PU only has a finite
number of registers, while the program Px it simulates can possess an arbitrarily large number of
registers.

23

Example 7.1. A universal program PU is simulating a program that has 205 instructions and whose
Gödel number is

x = 23 + 245 + 267 + 278 + 2117 + 2141 + · · ·+ 2c205 − 1.

If the current configuration of the computation of Px on some input has encoding

σ = 22 + 26 + 28 + 214 − 1,

then provide the next configuration of the computation and its encoding.

Solution.

24

Exercises

Note: assume that “computable” means the same thing as “URM-computable”. By the Church-
Turing thesis, we may assume that any arithmetic-related function is URM-computable.

For exercises 1-5 you may find it useful and fun to test your solutions with an online URM simulator:

https://sites.oxy.edu/rnaimi/home/URMsim.htm

1. Provide URM-programs that compute the following functions.

a.

f(x) =

{
0 if x = 0
1 if x ̸= 0

b. f(x) = 4

c.

f(x, y) =

{
1 if x ≤ y
0 if x > y

2. Show that the function

f(x, y) =

{
x− y if x ≥ y
0 otherwise

is URM-computable.

3. Show that the function f(x, y) = min(x, y) is URM-computable.

4. Suppose f(x) and g(x) are both URM-computable via programs P1 and P2 respectively. Provide
an outline of a URM program that computes f(g(x)).

5. Suppose P1 and P2 are two programs, and we desire to make a third program P3 whose behavior
can be described as “Run P1 until it halts. Then run P2 on the final register configuration
produced by P1.” Explain why P1P2 may not have the desired effect, where P1P2 means list
the instructions of P2 immediately after those of P1. Explain the alterations that may need to
be made in order for P1P2 to work as desired.

6. If f(x) is URM-computable via a program that has no jump instructions, then prove that
f(x) = C or f(x) = x + C, for some constant C ∈ N . In other words, f(x) must either be a
constant function or a linear function with slope equal to 1.

7. Prove that π(x, y) = 2x(2y + 1)− 1 is a bijection from N 2 to N .

8. Compute the following: π(3, 8), π−1(117), ξ(3, 4, 2), ξ−1(563), τ(5, 8, 4, 2, 4), τ−1(5387).

9. Use the β function to encode the following URM instructions: Z(6), S(17), T (5, 8), and
J(4, 6, 3). Also, determine β−1(99), β−1(108), β−1(129) and β−1(150).

25

10. Provide the Gödel number of the program P = S(1), S(1), T (1, 2), J(1, 1, 1).

11. Provide the instructions for P100.

12. Suppose that f(x, y) is a total computable function. For each m ∈ N , let gm(y) denote the
total computable function defined by gm(y) = f(m, y). Provide a total computable function h
such that, for each m ∈ N , h ̸= gm.

13. Show that there is a total computable function k(n) such that k(n) is an index of the function
⌊ n
√
x⌋.

14. A universal program PU is simulating a program that has 754 instructions and whose Gödel
number is

x = 27 + 223 + 263 + 271 + 2105 + 2141 + · · ·+ 2c754 − 1.

If the current configuration of the computation of Px on some input has encoding

σ = 23 + 25 + 210 + 213 + 216 − 1,

then provide the next configuration of the computation and its encoding.

15. Consider the function CurInsZero(x, i) which evaluates to 1 iff the ith instruction of URM
program Px is a Zero instruction. Use the encoding and decoding functions from Section 4 to
provide an arithmetic formula for computing CurInsZero.

16. Consider the function IncrementComponent(x, i) which returns the encoding of a tuple that
equals τ−1(x), but with 1 added to component i. Use the encoding and decoding functions
from Section 4 to provide an arithmetic formula for computing IncrementComponent.

26

Exercise Solutions

1. Provide URM-programs that compute the following functions.

a. J(1, 2, 3), S(2), T (2, 1)

b. Z(1), S(1), S(1), S(1), S(1).

c. J(1, 3, 5), J(2, 3, 6), S(3), J(1, 1, 1), S(4), T (4, 1)

2. 1. J(1, 2, 10), 2. T (1, 3), 3. T (2, 4), 4. S(3), 5. J(2, 3, 10), 6. S(4), 7. S(5), 8. J(1, 4, 12), 9.
J(1, 1, 4), 10. Z(1), 11. J(1, 1, 15), 12. T (5, 1), 13. J(1, 1, 14)

3. 1. J(1, 2, 10), 2. T (1, 3), 3. T (2, 4), 4. S(3), 5. J(2, 3, 10), 6. S(4), 7. J(1, 4, 9), 8. J(1, 1, 4),
9. T (2, 1),

4. First execute the instructions of P2. Let m be the index of the maximum register used by P2.
Next, perform the instructions Z(2), . . . , Z(m). Finally, execute the instructions of P1.

5. Suppose P1 has k instructions, then any jump instruction of P1 that jumps to a value v > k,
should now jump to k + 1, so that the first instruction of P2 executes next. Furthermore, each
jump instruction of P2 should have its jump address incremented by k so that jumps do not
accidentally land back in P1.

6. Case 1: register R1 is written over via either a Z(1) or T (m, 1) instruction, for some m > 1. In
case of a Z(1) instruction, R1 can hold at most a constant C which equals the number of S(1)
instructions that follow the final Z(1) instruction. In case R1 was written over via a transfer
from register Rm, R1 equals C, where C is the number of S(m) instructions that precede the
final T (m, 1) instruction, plus the number of S(1) instructions that follow the final T (m, 1)
instruction.

Case 2: register R1 is never written over. Then R1 will hold the value x + C, where C is the
number of S(1) program instructions.

If f(x) is URM-computable via a program that has no jump instructions, then prove that
f(x) = C of f(x) = x+ C, for some constant C ∈ N .

7. π maps onto the set of natural numbers since. for any natural number z, z + 1 can always be
written in the form 2xJ , where x ≥ 0 and J ≥ 1 is odd. Thus, letting y = (J − 1)/2, we have
π(x, y) = 2x(2y + 1)− 1 = z.

We now show that π is one-to-one. Suppose 2x1(2y1 + 1)− 1 = 2x2(2y2 + 1)− 1. This implies

2x1(2y1 + 1) = 2x2(2y2 + 1),

which is a positive integer. But any positive integer has a unique prime factorization. Hence,
we must have x1 = x2, which in turn implies 2y1 + 1 = 2y2 + 1, and so y1 = y2. Therefore, π is
one-to-one.

8. We have π(3, 8) = 135, π−1(117) = (1, 29), ξ(3, 4, 2) = 5 · 271 − 1, ξ−1(563) = (0, 1, 70),
τ(5, 8, 4, 2, 4) = 138952735, τ−1(5387) = (2, 0, 4, 1, 1).

9. We have β(Z(6)) = 20, β(S(17)) = 65, β(T (5, 8)) = 958, β(J(4, 6, 3)) = 20 · 287− 1, β−1(99) =
J(1, 1, 13), β−1(108) = Z(28), β−1(129) = S(33) and β−1(150) = T (2, 10).

27

10. γ(P) = 278537.

11. Z(1), S(1), T (1, 1), Z(1).

12. By the s-m-n theorem, there is a total computable function k(m) for which ϕk(m)(y) = gm(y) =
f(m, y). Now define h(y) = ϕk(y)(y) + 1. Now let m ∈ N be given. Then

h(m) = ϕk(m)(m) + 1 = gm(m) + 1 ̸= gm(m).

Thus, h disagrees with gm on input m, and so h ̸= gm.

13. The function f(n, x) = ⌊ n
√
x⌋ is certainly computable by the Church-Turing thesis. Thus, by

the s-m-n theorem, there is a total computable function k(n) for which

ϕk(n)(x) = f(n, x) = ⌊ n
√
x⌋.

Therefore, k(n) is an index for the “n th root” function.

14. We have
c = τ−1(σ) = (3, 1, 4, 2, 2).

Also, β(I2) = 15 and 15 mod 4 = 3 implies that I2 is a jump instruction J(i, j, k), where
ξ(i− 1, j − 1, k − 1) = 3 = (15− 3)/4. Finally, to get ξ−1(3) we see that

3 + 1 = 4 = 22(2(0) + 1),

and π−1(2) = (0, 1) to give β−1(15) = J(1, 2, 1). Therefore,

cnext = (3, 1, 4, 2, 3)

and
τ(cnext) = 23 + 25 + 210 + 213 + 217 − 1.

15. CurInsZero(x, i) = (a(x, i) mod 4 = 0)

16. Incrementing the i th component has the effect of adding a 1 to the power-of-two exponents
i, . . . , k(x), which yields

IncrementComponent(x, i) = x+

k(x)∑
j=i

2c(x,j).

28

