

Decidability

Last Updated: December 5th, 2025

1 Introduction

Perhaps the most fundamental question one can ask about the Turing machine model of computation is “which computational problems are solvable using a Turing machine?”. In what follows we restrict attention to decision problems, since by now it should be understood that associated with most non-decision problems are decision problems that capture the essence of their non-decision counterparts. The question then becomes “which computational problems are Turing decidable?”. In other words, is there a Turing machine that halts on all inputs and accepts only those inputs that represent positive instances of the decision problem in question? If yes, then we say that the decision problem is **decidable**. Otherwise we say that it is **undecidable**.

Moving forward, we simply refer to a computational decision problem as a “decision problem”. Moreover, we know from the Church-Turing thesis, that establishing the decidability of a decision problem L amounts to being able to describe a deterministic step-by-step procedure that, when applied to instance x of L , results in a final decision as to whether or not x is a positive instance of L . Moreover, the following are three different levels of abstraction that are often used to describe such a procedure.

Natural Language The procedure is written in a somewhat informal manner that uses one or more sentences of a natural language along with any necessary mathematical formalism.

Pseudocode The procedure is written in a semiformal manner as a structured list of statements, where each statement may be expressed using a combination of natural language, program-like syntax, and mathematical symbolism.

Formal Program The procedure is described using a programming language that usually consists of structured lines of syntax from some programming language.

In theoretical computer science, formal programs are rarely used except for the purpose of demonstration.

The vast majority of decision problems that are encountered in both applied and theoretical computer science are decidable. For example, consider all the NP-complete problems, such as **SAT**, **3SAT**, and **Clique** to name just a few of the thousands of known NP-complete problems. All of these problems are decidable since, for any problem instance, there are always a finite number of possible “solutions” that can establish the the instance being positive.

Example 1.1. For example, a Boolean formula F with n variables is a positive instance of **SAT** iff one of the 2^n different variable assignments α satisfies $F(\alpha) = 1$. This can be verified in a finite number of steps. \square

We may generalize the previous example and state that

“A decision problem is decidable if, for each problem instance, there is always a finite number of possibilities that must be checked and the process of checking a single possibility always requires at most a finite number of steps”.

Thus, from the vantage point of decidability, the only interesting problems are those for which there may be an infinite number of possible solutions and/or for which checking a possible solution may require an unlimited number of steps.

Example 1.2. A **Diophantine equation** is one of the form $p(x_1, \dots, x_m) = 0$, where $p(x_1, \dots, x_m)$ is a polynomial in $m \geq 1$ variables and for which the term coefficients are integers. For example, if $m = 3$, $x_1 = x$, $x_2 = y$, and $x_3 = z$, then

$$xy^2 - x^2 - 8xy^2z + x^3yz^4 - 7xz = 0$$

is a Diophantine equation. An instance of the **Diophantine Equation** decision problem is a Diophantine Equation, and the problem is to decide if is an integer assignment that can be made to the equation variables that results in the left side of the equation evaluating to 0. Notice that, unlike the variables of a Boolean formula, each of the variables of Diophantine equation has an infinite domain in the set of all integers I .

Theorem 1.3. (Yuri Matiyasevich, 1970) The Diophantine Equation decision problem is undecidable.

In this lecture we examine several decision problems that are related to the models of computation that have been studied in this course: DFA's, NFA's, regular expressions, CFL's, and Turing Machines.

2 Decision Problems Related to DFA's

Definition 2.1. An instance of $\text{Accept}_{\text{DFA}}$ consists of a DFA $M = (Q, \Sigma, \delta, q_0, F)$ and a word w over M 's input alphabet Σ . The problem is to decide if M accepts w .

Theorem 2.2. $\text{Accept}_{\text{DFA}}$ is decidable.

Proof of Theorem. The following pseudocode describes a procedure for deciding $\text{Accept}_{\text{DFA}}$.

Input: a DFA $M = (Q, \Sigma, \delta, q_0, F)$ and a word w over M 's input alphabet Σ .

Output: 1 iff M accepts w .

$q \leftarrow q_0$ //Initialize current state to be the initial state.

For each $i \in \{1, \dots, |w|\}$,

$q \leftarrow \delta(q, w_i)$. //Use δ -transition function to compute next state.

Return $q \in F$. //Accept iff q is an accepting state.

Corollary 2.3. The following problems are also decidable.

1. $\text{Accept}_{\text{NFA}}$
2. $\text{Accept}_{\text{RegEx}}$

For example, an instance of $\text{Accept}_{\text{RegEx}}$ consists of a regular expression E over some alphabet Σ and a word w over Σ . The problem is to decide if $w \in L(E)$.

Definition 2.4. An instance of $\text{Empty}_{\text{DFA}}$ consists of a DFA $M = (Q, \Sigma, \delta, q_0, F)$. The problem is to decide if $L(M) = \emptyset$.

Theorem 2.5. $\text{Empty}_{\text{DFA}}$ is decidable.

Proof of Theorem. The following pseudocode describes a procedure for deciding $\text{Empty}_{\text{DFA}}$.

Input: a DFA $M = (Q, \Sigma, \delta, q_0, F)$.

Output: 1 iff M accepts w .

Construct the directed graph $G = (Q, E)$, where

$(q_1, q_2) \in E$ iff there is some symbol s for which $\delta(q_1, s) = q_2$.

For each $q \in F$,

If $\text{Reachable}(G, q_0, q)$, then reject. //There is at least one word accepted by M .

Return 1.

Corollary 2.6. The following problems are also decidable.

1. $\text{Empty}_{\text{NFA}}$
2. $\text{Empty}_{\text{RegEx}}$

Definition 2.7. An instance of $\text{Equal}_{\text{DFA}}$ consists of two DFAs $M_1 = (Q, \Sigma, \delta_1, q_{01}, F_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)$. The problem is to decide if $L(M_1) = L(M_2)$.

Theorem 2.8. $\text{Equal}_{\text{DFA}}$ is decidable.

Proof of Theorem. In the Finite Automata lecture it was established that regular languages are closed under the union, intersection, complement, symmetric difference, and difference operations. Thus, given two DFA's M_1 and M_2 we may construct a DFA M that accepts $L(M_1) \oplus L(M_2)$. Moreover $L(M_1) = L(M_2)$ iff $L(M) = \emptyset$, which is decidable by Theorem 2. \square

Corollary 2.9. The following problems are also decidable.

1. $\text{Equal}_{\text{NFA}}$
2. $\text{Equal}_{\text{RegEx}}$

Decision Problems Related to CFG's

Definition 2.10. An instance of $\text{Accept}_{\text{CFG}}$ consists of a context free grammar $G = (V, \Sigma, R, S)$ and a word w over Σ . The problem is to decide if $w \in L(G)$, the language derived by G .

Theorem 2.11. $\text{Accept}_{\text{CFG}}$ is decidable.

Proof of Theorem. The following pseudocode describes a recursive algorithm for deciding $\text{Accept}_{\text{CFG}}$. The code makes use of the notation $u[\geq i]$ which equals the suffix of word u starting at the i th letter of u . In case $i > |u|$, then $u[\geq i]$ is assigned ε . Note: for the initial call to `accept`, ν is assigned S , the start variable of G , and we assume that w is nonempty (for $w = \varepsilon$ deciding if w is accepted by G amounts to checking if start variable S has an ε rule). Note that w may become empty in subsequent calls to `accept`.

Name: `accept`

Input: a CFG $G = (V, \Sigma, R, S)$ in Chomsky Normal Form, a word w over Σ , and a word ν over V^* .

Output: 1 iff M accepts w .

If $\nu == \varepsilon$, then return $(w == \varepsilon)$.

Let variable $A = \nu_1$ be the first variable of ν .

For each rule $\rho \in R$ for which $\text{head}(\rho) = A$,

If $\text{body}(\rho) = s \in \Sigma$ and $s = w_1$ and $\text{accept}(G, w[\geq 2], \nu[\geq 2])$, then return 1.

Else if $\text{body}(\rho) = BC$, where $B, C \in V$, and $|\nu| < |w|$ and $\text{accept}(G, w, BC \circ \nu[\geq 2])$, then return 1.

Return 0. //All possible rule combinations have been tried and were unsuccessful in deriving w .

The above algorithm always terminates since $|\nu|$ is never allowed to exceed the length of input word w . Moreover, since the rules of G are being followed, if w is accepted, then $w \in L(G)$. Conversely, if $w \in L(G)$, then there is at least one leftmost derivation that derives w and one can prove using induction that such a correct leftmost derivation will eventually be realized by the recursive algorithm, leading to the acceptance of w . \square

Example 2.12. Convert the CFG with rule set

$$S \rightarrow SS \mid aSb \mid \varepsilon$$

to Chomsky normal form.

Solution.

Example 2.13. Demonstrate the `accept` algorithm above for the CFG whose rule set was derived in the previous example and with the input word $w = ab$. Draw the entire recursion tree and label each node with the pair (ν, w) where ν is the current variable word and w is the current input word at that point of the recursion. When iterating through all the bodies of of $A = \nu_1$, make sure to follow the order that the bodies appear in the provided list of rules.

Solution.

Definition 2.14. An instance of EmptyCFG is a context free grammar $G = (V, \Sigma, R, S)$ and the problem is to decide if $L(G) = \emptyset$.

Theorem 2.15. EmptyCFG is decidable.

Proof of Theorem.

Input: a CFG $G = (V, \Sigma, R, S)$.

Output: 1 iff $L(G) = \emptyset$.

Mark all terminal symbols of Σ .

Set marked=“true”.

While marked equals “true”.

Set marked=“false”.

For each unmarked variable $A \in V$,

For each rule $A \rightarrow \gamma$,

- If every symbol in γ has been marked, then mark A and set marked=“true”.

If S is marked, then reject.

Else accept.

The above algorithm marks all variables that are capable of deriving a word $w \in \Sigma^*$. Therefore, the algorithm rejects iff S is marked, since in this case $L(G)$ will not be empty. \square

Example 2.16. Apply the above algorithm to the following CFG.

$$S \rightarrow ASC|Bb$$

$$A \rightarrow C|S$$

$$B \rightarrow a|\varepsilon$$

$$C \rightarrow b|B$$

Solution.

Finally, we will prove the following theorem in a future lecture.

Theorem 2.17. $\text{Equals}_{\text{CFG}}$ is the problem of deciding if two context free grammars derive the same language. This problem is undecidable.