
Decidability

Last Updated: December 5th, 2025

1 Introduction

Perhaps the most fundamental question one can ask about the Turing machine model of computation
is “which computational problems are solvable using a Turing machine?”. In what follows we restrict
attention to decision problems, since by now it should be understood that associated with most non-
decision problems are decision problems that capture the essence of their non-decision counterparts.
The question then becomes “which computational problems are Turing decidable?”. In other words,
is there a Turing machine that halts on all inputs and accepts only those inputs that represent
positive instances of the decision problem in question? If yes, then we say that the decison problem
is decidable. Otherwise we say that it is undecidable.

Moving forward, we simply refer to a computational decsion problem as a “decision problem”.
Moreover, we know from the Church-Turing thesis, that establishing the decidability of a decision
problem L amounts to being able to describe a deterministic step-by-step procedure that, when
applied to instance x of L, results in a final decision as to whether or not x is a positive instance of
L. Moreover, the following are three different levels of abstraction that are often used to describe
such a procedure.

Natural Language The procedure is written in a somewhat informal manner that uses one or more
sentences of a natural language along with any necessary mathematical formalism.

Pseudocode The procedure is written in a semiformal manner as a structured list of statements,
where each statement may be expressed using a combination of natural language, program-like
syntax, and mathematical symbolism.

Formal Program The procdure is described using a programming language that usually consists
of structured lines of syntax from some programming language.

In theoretical computer science, formal programs are rarely used except for the purpose of demonstration.

1

The vast majority of decision problems that are encountered in both applied and theoretical computer
science are decidable. For example, consider all the NP-complete problems, such as SAT, 3SAT, and
Clique to name just a few of the thousands of known NP-complete problems. All of these problems
are decidable since, for any problem instance, there are always a finite number of possible “solutions”
that can establish the the instance being positive.

Example 1.1. For example, a Boolean formula F with n variables is a positive instance of SAT iff
one of the 2n different variable assignments α satisfies F (α) = 1. This can be verified in a finite
number of steps.

We may generalize the previous example and state that
“A decision problem is decidable if, for each problem instance, there is always a finite
number of possibilities that must be checked and the process of checking a single
possibility always requires at most a finite number of steps”.

Thus, from the vantage point of decidability, the only interesting problems are those for which there
may be an infinite number of possible solutions and/or for which checking a possible solution may
require an unlimited number of steps.

2

Example 1.2. A Diophantine equation is one of the form p(x1, . . . , xm) = 0, where p(x1, . . . , xm)
is a polynomial in m ≥ .1 variables and for which the term coefficients are integers. For example, if
m = 3, x1 = x, x2 = y, and x3 = z, then

xy2 − x2 − 8xy2z + x3yz4 − 7xz = 0

is a Diophantine equation. An instance of the Diophantine Equation decision problem is a
Diophantine Equation, and the problem is to decide if is an integer assignment that can be made to
the equation variables that results in the left side of the equation evaluating to 0. Notice that, unlike
the variables of a Boolean formula, each of the variables of Diophantine equation has an infinite
domain in the set of all integers I.

Theorem 1.3. (Yuri Matiyasevich, 1970) The Diophantine Equation decision problem is undecidable.

In this lecture we examine several decision problems that are related to the models of computation
that have been studied in this course: DFA’s, NFA’s, regular expressions, CFL’s, and Turing
Machines.

3

2 Decision Problems Related to DFA’s

Definition 2.1. An instance of AcceptDFA consists of a DFA M = (Q,Σ, δ, q0, F) and a word w over
M ’s input alphabet Σ. The problem is to decide if M accepts w.

Theorem 2.2. AcceptDFA is decidable.

Proof of Theorem. The following pseudocode describes a procedure for deciding AcceptDFA.

Input: a DFA M = (Q,Σ, δ, q0, F) and a word w over M ’s input alphabet Σ.

Output: 1 iff M accepts w.

q ← q0 //Initialize current state to be the initial state.

For each i ∈ {1, . . . , |w|},

q ← δ(q, wi). //Use δ-transition function to compute next state.

Return q ∈ F . //Accept iff q is an accepting state.

Corollary 2.3. The following problems are also decidable.

1. AcceptNFA

2. AcceptRegEx

For example, an instance of AcceptRegEx consists of a regular expression E over some alphabet Σ

and a word w over Σ. The problem is to decide if w ∈ L(E).

4

Definition 2.4. An instance of EmptyDFA consists of a DFA M = (Q,Σ, δ, q0, F). The problem is to
decide if L(M) = ∅.

Theorem 2.5. EmptyDFA is decidable.

Proof of Theorem. The following pseudocode describes a procedure for deciding EmptyDFA.

Input: a DFA M = (Q,Σ, δ, q0, F).

Output: 1 iff M accepts w.

Construct the directed graph G = (Q,E), where

(q1, q2) ∈ E iff there is some symbol s for which δ(q1, s) = q2.

For each q ∈ F ,

If Reachable(G, q0, q), then reject. //There is at least one word accepted by M .

Return 1.

Corollary 2.6. The following problems are also decidable.

1. EmptyNFA

2. EmptyRegEx

5

Definition 2.7. An instance of EqualDFA consists of two DFAs M1 = (Q,Σ, δ1, q01, F1) and M2 =
(Q2,Σ, δ2, q02, F2). The problem is to decide if L(M1) = L(M2).

Theorem 2.8. EqualDFA is decidable.

Proof of Theorem. In the Finite Automata lecture it was established that regular languages are
closed under the union, intersection, complement, symmetric difference, and difference operations.
Thus, given two DFA’s M1 and M2 we may construct a DFA M that accepts L(M1) ⊕ L(M2).
Moreover L(M1) = L(M2) iff L(M) = ∅, which is decidable by Theorem 2.

Corollary 2.9. The following problems are also decidable.

1. EqualNFA

2. EqualRegEx

6

Decision Problems Related to CFG’s

Definition 2.10. An instance of AcceptCFG consists of a context free grammar G = (V,Σ, R, S) and
a word w over Σ. The problem is to decide if w ∈ L(G), the language derived by G.

Theorem 2.11. AcceptCFG is decidable.

Proof of Theorem. The following pseudocode describes a recursive algorithm for deciding AcceptCFG.
The code makes use of the notation u[≥ i] which equals the suffix of word u starting at the ith letter
of u. In case i > |u|, then u[≥ i] is assigned ε. Note: for the initial call to accept, ν is assigned S,
the start variable of G, and we assume that w is nonempty (for w = ε deciding if w is accepted by G
amounts to checking if start variable S has an ε rule). Note that w may become empty in subsequent
calls to accept.

Name: accept

Input: a CFG G = (V,Σ, R, S) in Chomsky Normal Form, a word w over Σ, and a word ν
over V ∗.

Output: 1 iff M accepts w.

If ν == ε, then return (w == ε).

Let variable A = ν1 be the first variable of ν.

For each rule ρ ∈ R for which head(ρ) = A,

If body(ρ) = s ∈ Σ and s = w1 and accept(G,w[≥ 2], ν[≥ 2]), then return 1.

Else if body(ρ) = BC, where B,C ∈ V , and |ν| < |w| and accept(G,w,BC ◦ ν[≥ 2]),

then return 1.

Return 0. //All possible rule combinations have been tried and were unsuccessful in deriving
w.

The above algorithm always terminates since |ν| is never allowed to exceed the length of input word
w. Moreover, since the rules of G are being followed, if w is accepted, then w ∈ L(G). Conversely,
if w ∈ L(G), then there is at least one leftmost derivation that derives w and one can prove using
induction that such a correct leftmost derivation will eventually be realized by the recursive algorithm,
leading to the acceptance of w.

7

Example 2.12. Convert the CFG with rule set

S → SS | aSb | ε

to Chomsky normal form.

Solution.

8

Example 2.13. Demonstrate the accept algorithm above for the CFG whose rule set was derived
in the previous example and with the input word w = ab. Draw the entire recursion tree and label
each node with the pair (ν, w) where ν is the current variable word and w is the current input word
at that point of the recursion. When iterating through all the bodies of of A = ν1, make sure to
follow the order that the bodies appear in the provided list of rules.

Solution.

9

Definition 2.14. An instance of EmptyCFG is a context free grammar G = (V,Σ, R, S) and the
problem is to decide if L(G) = ∅.

Theorem 2.15. EmptyCFG is decidable.

Proof of Theorem.

Input: a CFG G = (V,Σ, R, S).

Output: 1 iff L(G) = ∅.

Mark all terminal symbols of Σ.

Set marked=“true”.

While marked equals “true”.

Set marked=“false”.

For each unmarked variable A ∈ V ,

For each rule A→ γ,

· If every symbol in γ has been marked, then mark A and set marked=“true”.

If S is marked, then reject.

Else accept.

The above algorithm marks all variables that are capable of deriving a word w ∈ Σ∗. Therefore, the
algorithm rejects iff S is marked, since in this case L(G) will not be empty.

10

Example 2.16. Apply the above algorithm to the following CFG.

S → ASC|Bb

A→ C|S

B → a|ε

C → b|B

Solution.

Finally, we will prove the following theorem in a future lecture.

Theorem 2.17. EqualsCFG is the problem of deciding if two context free grammars derive the same
language. This problem is undecidable.

11

