Undecidability and the Diagonalization Method

Last Updated April 28th, 2025

1 Introduction

In this lecture the term “computable function” refers to a function that is URM computable or,
equivalently, general recursive.

Recall that a predicate function is a function M (z) whose codomain is {0, 1}. Moreover, associated
with every decision problem A is a predicate function d : A — {0, 1}, called the characteristic
function for A and for which

d(z) = 1 if x is a positive instance of A
AT 0 if 2 is a negative instance of A

Finally, we say that A is decidable iff function d4 is total computable. In other words, for any
instance x of A, there is a URM program P, that

1. halts on all inputs,
2. has a range equal to {0,1}, and

3. outputs 1 iff x is a positive instance of A.

On the other hand, if A’s characteristic function is not total URM computable, then A is said to be
undecidable.

In this lecture we assume that the instances of every decision problem are equal to the set N of
natural numbers.

Example 1.1. Consider the decision problem Prime whose instances are natural numbers and where
a positive instance is a prime number. Then Prime is decidable since one can write a URM program
that, on input n, outputs 1 iff n is prime, and 0 if n is 0, 1, or a composite number. Such a program
is often one of the first programs assigned in a beginning programming class.

1.1 Properties of programs and computable functions

Since every program P may be associated with a unique natural number z, called its its Godel
number, it allows us to readily define decision problems about programs.

Example 1.2. Consider decision problem Total where an instance of Total is a Godel number =,
and the problem is to decide if program P, is total, meaning that it halts on all of its inputs.

One of the remarkable achievements of Computability theory is in showing that almost all program
decision problems are undecidable. In fact program decision problems were among the first to be
shown undecidable. Later, other mathematical problems were shown to be undecidable with the help
of our old fried from complexity theory: the map reduction (as well as the Turing reduction). Indeed,
the process of showing that some decision problem B is undecidable is similar to that of showing
a problem in NP is NP-complete: namely, show that a known undecidable problem A is mapping
reducible to B, i.e. A <,, B. Of course, this strategy requires that there be an initial undecidable
problem that was proven as such using some other proof technique. And this technique is called the
“diagonalization method”, and is the subject of the next section.

2 The Diagnonalization Method

Definition 2.1. Let A denote some (possibly infinite) alphabet. Then we say that w = wowjwsy - - -
is an infinite word over alphabet A iff, for each 7 > 0, w; € A.

Example 2.2. The following are infinite words.

1. The digits of m 3141592653589793 ... is an infinite word over the alphabet {0,1,...,9}.

2. The Fibonacci word f is defined by the recurrence fy = a, fi = ab, and f, 2 = fn11fn, for
n > 2 and
f = abaababaabaababaab . . .

is an infinite word over alphabet {a, b}, where f is defined so that each f,,, n > 0 is a prefix of

I3

3. Any function ¢ : ' — N from natural numbers to natural numbers forms the infinite word

9=9(0)g(1)g(2) ...

over “alphabet” V.

Given an infinite set S of infinite words over some alphabet A, all of which have some property
P. The diagonalization method is a means for proving that the members of & either cannot be
placed in an (infinite) list, or there is some infinite word X that does not have property P. The proof
technique works in the following steps.

1. Assume the members of S can be placed in an infinite list L, namely L = Wy, Wy, Wy,

2. Let w;; denote the jth letter of word W;. Define a new infinite word X, where the jth letter of
X, call it z;, is defined so that z; # wj;, the jth letter of W.

3. Then X is not in the list of words since X # W; for all j = 0,1,2,.... This is true since letter
j of X is different from letter j of W.

There are two possible consequences to the above construction of X which is different from each of
the words in list S.

Case 1 It is assumed that X has property P. Conclusion: the members of & cannot all appear
together in a countably infinite list. In this case we have proven that S is an uncountable set.

Case 2 We know for a fact that the members of S can can appear together in a countably infinite
list. In other words, we know that S is a countable set. Therefore, X does not have property

P.

The following table demonstrates the diagonalization method with respect to infinite binary words.

1—-0

index\nth letter | 0 1 2 k Observation

Wo 0—1 1 0 0 .’l/'o:l?éwOO:O
W1 1 1—-0 1 0 1'1:()7&11)11:1
Wa 1 1 0—1 0 ZL’2:17£U}22:0
Wi 1 1 0 T =0# wg =1

2.1 There exist functions that are not computable

Let CF denote the set of all URM-computable functions. One consequence of being able to list
all URM programs as Py, P, P, ... is that we may also list all URM-computable functions, namely
o, ¢1, P2, Thus CF is countably infinite, meaning that we can place all computable functions
in an infinite list.

On the other hand, the following theorem tells us that there not all functions f : N — N are
computable.

Theorem 2.3. The set F of all functions from natural numbers to natural numbers cannot be
enumerated. Therefore, there is at least one function that is not computable.

Proof. We use the diagonalization method to obtain a proof by contradiction. Suppose F can be
enumerated as fy, fi, f2,.... Then we may define the function g € F by

() = 0 if f.(z) is undefined
NE/ = fe(z)+1 otherwise

Notice that g(x) is a function that disagrees in output with every function in the enumeration.
Thus, since g cannot disagree with itself, we must conclude that ¢ is not in the enumeration which
contradicts the assumption that all functions in F are in the enumeration. O

The above proof is an example of using the diagonalization method. The table below helps visualize
this method as it is used in Theorem 2.3.

index\input n | 0 1 2 ek --- | Observation

foln) 2=3 7 4 A8 | 9(0) =3 £ f(0) =
fi(n) T T—=0 7 e T 1 g(1) =0# A1) =
fa(n) 7 5 9510 --- 36] g(2) =10 £ f2(2)
filn) S T T P .&(k:):ka(k):l

The theory of probability and measurable sets allows us to say something stronger: “when randomly
generating a function f : NV — A/, with probability equal to 1 a non-computable function will be
generated”. In other words, the event of randomly generating a computable function has probability
equal to 0.”

3 The Self Acceptance Property is Undecidable

Program P is said to have the self acceptance property iff P,(z) is defined, where x is the Godel
number of P. A more succinct way of describing this property is that P, has the self acceptance
property iff x € W,. Stated as a decision problem, x is a positive instance of Self Accept iff P,(x)
is defined.

Theorem 3.1. Self Accept is undecidable.

Proof. Suppose by way of contradiction that Self Accept is decidable. Then the characteristic

function
1 ifzeW,

dself(®) = { 0 otherwise
is total computable. Let F' be the URM program that computes dg.)¢(7). Now define the function

g(z) as
1 if dyope(z) =0
_ self
g(z) = { undefined otherwise

To see that g(z) is computable, consider a description of the a program G for computing g. On input
r the program first executes the program F that computes dg.j¢(z). If F'(x) = 0, then G returns 1.
Otherwise, G enters an infinite loop, so that g(x) is undefined. By the Church-Turing thesis, there
is a URM program that behaves in the same manner as G.

Now, since g(x) is computable, there is an index e, such that g(z) = ¢.(z) for all z € M. In particular
g(e) = ¢.(e). Now suppose g(e) is defined. Then ¢.(e) is defined, meaning that e € W,, which implies
that M(e) = 1, which in turn (by definition of ¢g) implies that g(e) is undefined, a contradiction.

On the other hand, if g(e) is undefined, then ¢.(e) is undefined, meaning that e ¢ W, which implies
that dg.¢(e) = 0, which in turn (by definition of g) implies that g(e) = 1 is defined, a contradiction.
Therefore, Self Acceptance must be undecidable. O

Corollary 1. The Halting Problem is the problem of deciding if ¢,(y) is defined, for given
x,y € N. Moreover, the Halting Problem is undecidable.

Proof of Corollary 1. If the Haltng Problem were decidable, say by a total computable predicate
function dy 43¢ (z,y). Then Self Accept becomes decidable. Indeed, dgo¢(7) = 1 iff ¢, (z) is defined,
iff dy 3¢ (z,7) = 1, which contradicts the undecidability of the Self Accept property. O]

The following table suggests that the above proof can be understood as another diagonalization
argument. The red values in the table are the outputs being assigned to g based on the values of

dgelf(2)-

index\input n | 0 1 2 eee -+ | self accepting?
bo(n) 217 4 18 -+ | yes

o1(n) t 1517 o 1 |mo

$2(n) 7 5 9—1 -+ 36 <o+ | yes

9(”) = ¢e(n) T 1 T 1 —71 gfes/no

g(0) =1, g(1) =1, g(2) =1, ..., g(e) =7 (1 or 17). The original table states that g(e) = 1, but the
changing of values along the diagonal in order to define g implies that g is undefined, a contradiction.

3.1 The Total decision problem is undecidable

We use the Church-Turing thesis to prove that given a URM program P, there is no algorithm for
deciding whether or not P computes a total function.

Theorem 2. The characteristic function for Total

|1 if ¢, is total
dtOt(m) o { 0 otherwise

is not URM computable. In other words, there is no URM program P for which, on input z, P(z) |
with either 1 or 0 as output, depending on whether or not ¢, is total.

Proof Theorem 2. By way of contradiction, assume that diq¢(z) is total and URM computable
via URM program M. Then the adversary function g(x) defined by

[Pux)+1 it dig(z) =1
=0 i S

is URM computable by the Church-Turing thesis as follows.

1. On input x, compute dint(x) by simulating M on input x.
2. If M(z) =0, then return 0.

3. Else, simulate universal URM Py on inputs x and x. Since P, is total the simulation produces
output z = Py(z,z) = P.(z). Return z + 1.

Thus, by the Church-Turing thesis, there is a URM program that computes g(z). Moreover, g(z) is
total, since diot () is total and Py (x, x) always halts in case diqt(z) = 1.

Since g is URM computable, let e be an index for g, meaning that g(x) = ¢.(x). Then ¢, is total,
which means that g(e) = 1. Thus, we have the following two contradictory facts:

1. g(e) = ¢e(€) by way of e being an index for g.

2. g(e) = P.(e) + 1 = ¢.(e) + 1 by the definition of g.

Therefore, our assumption that dio¢(x) is total computable must be false, and so the problem of
deciding if ¢, is total is an undecidable property. O

The following table suggests that the above proof can be understood as another diagonalization
argument. The red values in the table are the outputs being assigned to f by g.

index\input x | 0 1 2 e .-+ | total?
do(x) 2—-3 7 4 .- 18 -+ | yes
o1 () 4 250 7 o .-+ | no
¢o(x) 7 5 9—10 --- 36 oo | yes
g(x) = ¢e(x) |3 0 10 oo 95 =96 --- | yes

g(0) =3, g(1) =0, g(2) = 10, ..., g(e) =7 (95 or 967). The original table states that g(e) = 95,
but the changing of values along the diagonal in order to define g implies that it must be 96, a
contradiction.

Question: what if in the table above, we had ¢;(1) = 0. In this case we have ¢;(1) = g(1). Is this a
problem? Why or why not?

10

4 Using Turing Reducibility to Prove Undecidability

Recall the following definition of Turing Reducibility.

Definition 4.1. Problem A is Turing reducible to problem B, denoted A < B, iff there is some
algorithm that can solve any instance z of A, and is allowed to make zero or more queries to a
B-oracle, i.e. an oracle that provides solutions to instances of B.

Theorem 3. If A <t B A is undecidable and A <7 B, then B is also undecidable.

Proof. Suppose B were decidable and thus has total computable characteristic function fp(x) that
is computed by some URM program P. Let) be the oracle program that decides A with the help of
a B-oracle. Now consider the following description of an algorithm for computing A’s chracteristic
function fa(x).

1. Input z.
2. Simulate) on input .

(a) Whenever () makes a query queryg(y) to the B-oracle, answer the query by simulating P
on input y and answering the query with fg(y).

3. Return Q(z). //i.e. output fa(x)

By the Church-Turing thesis, the above program can be implemented with a URM program. Thus,
fa(z) is total computable which means A is decidable, a contradiction. Therefore, problem B must
be undecidable.

11

Example 4.2. Let Zero be the decision problem which, on input & determines whether or not URM
program P, is total and always outputs the value 0. Prove that Zero is undecidable by showing that
Total <p Zero.

12

