
NP-Complete Problems

Last Updated September 23rd, 2025

1 The Satisfiability (SAT) Problem

A Boolean formula F (x1, . . . , xn) over variable set V = {x1, . . . , xn} may be represented with a
parse tree for which i) each internal node is labeled either ∧ or ∨, and ii) each leaf node is labeled
either xi or xi, for some i = 1, . . . , n. Leaf nodes are also called literal nodes, since a formula literal
is any variable or its negation. For example, the Boolean formula

F (x1, x2, x3) = x1 ∧ (x2 ∨ x3)

may be represented by the parse tree shown in Figure 1.

Given Boolean formula F and assignment α over V we may evaluate F using the function eval(F, α)
that returns a value in {0, 1}. We provide a recursive definition of eval(F, α) over the set of all
Boolean formulas defined over V .

Base Case If F consists of a leaf node labeled with literal l (i.e., x or x for some variable x), then

eval(F, α) = α(l).

∧

x1 ∨

x2 x3

Figure 1: Parse tree for Boolean formula x1 ∧ (x2 ∨ x3)

1

Recursive Case (And) If the root of F is labeled ∧, and C1, . . . , Cm are the root children, then

eval(F, α) = eval(C1, α) ∧ · · · ∧ eval(Cm, α).

Recursive Case (Or) If the root of F is labeled ∨, and C1, . . . , Cm are the root children, then

eval(F, α) = eval(C1, α) ∨ · · · ∨ eval(Cm, α).

It is worth noting that eval(F, α) may be computed in O(|F |) steps, where |F | denotes the number
of nodes in formula F .

2

Example 1.1. Use the recursive definition of eval to evaluate the formula

F (x1, x2, x3) = ((x1 ∨ x3) ∧ (x1 ∨ x2)) ∨ ((x2 ∨ x3) ∧ (x1 ∨ x3))

over the assignment α = (1, 0, 1).

Demonstrate how the number of evaluation steps is proportional to the number of nodes in the tree
representation of F .

3

Example 1.2. The satisfiability problem (SAT) is the problem of deciding if a Boolean formula
F (x1, . . . , xn) evaluates to 1 on some assignment α over the Boolean variables x1, . . . , xn. We show
that SAT ∈ NP. Let F (x1, . . . , xn) be an instance of SAT.

Step 1: define a certificate. Solution. α is an assignment over the variables x1, . . . , xn.

Step 2: provide a semi-formal verifier algorithm. Solution. Evaluate F (x1, . . . , xn) recursively.

//Base Case:

If F = l is a single literal, then return α(l).

//Recursive Case 1

If F = F1 ∧ F2 ∧ · · · ∧ Fk, then return

eval(F1, α) ∧ eval(F2, α) ∧ · · · ∧ eval(Fk, α).

//Recursive Case 2

If F = F1 ∨ F2 ∨ · · · ∨ Fk, then return

eval(F1, α) ∨ eval(F2, α) ∨ · · · ∨ eval(Fk, α).

Step 3: provide size parameters for SAT. Solution. The size parameter is |F |, the number of
nodes in F ’s parse tree.

Step 4: provide the verifier’s running time with an explanation. Solution. The verifier
has running time O(|F |), since evaluating F can be done by evaluating each node of F ’s parse tree
exactly once.

Therefore, SAT ∈ NP.

4

2 NP-Complete Decision Problems

Now that we have an idea about the type of decision problems that belong in NP, we seek a method
for providing strong evidence that a decision problem is in some sense one of the hardest to solve
amongst all problems in NP, and thus is the best candidate for not belonging to class P. Furthermore,
if we consider what might constitute a difficult problem amongst a class of problemsthe most difficult
would seem to be one to which every other problem in the class can be reduced. Indeed, in the final
section of the Mapping Reducibility lecture the following statement was proved.

� If A ≤p
m B and B ∈ P then necessarily A ∈ P.

� Therefore, if every problem in NP were polynomial-time reducible to B ∈ NP, then the P =? NP

question would hinge on the question of whether B can be solved in polynomial time.

Definition 2.1. A decision problem B is said to be NP-complete iff

1. B ∈ NP

2. for every other decision problem A ∈ NP, A ≤p
m B.

5

Theorem 2.2. (Cook’s Theorem) SAT is NP-complete.

Outline of a Proof of Cook’s Theorem

1. Let L ∈ NP be an arbitrary decision problem and x an instance of L.

2. Let v(x, c) be the verifier program associated with L.

3. Let q(|x|) denote the running time for v(x, c), where q is a polynomial.

4. Let variables y1, . . . , yl(|x|) be a collection of Boolean variables that is capable of encoding any
certificate c for verifying x, where l is a polynomial (one of the requirements of a certificate is
that its size must be polynomial with respect to |x|).

5. It can be shown that any program that runs in a polynomial q(|x|) number of steps and depends
on a polynomial l(|x|) number of Boolean variables, can be procedurally converted in polynomial
time to a Boolean formula

Fv,x(y1, . . . , yl(|x|)),

where

(a) Fv,x is satisfiable iff v(x, c) evaluates to 1 for some certificate c, iff x is a positive instance
of L, and

(b) |Fv,x| is bounded in size by some polynomial in terms of |x|, the size of x.

Therefore,
L ≤p

m SAT.

6

Example 2.3. Recall that the Clique decison problem is in NP and suppose v is a verifier for Clique,
where, given an instance (G = (V,E), k) of Clique, a certificate for (G, k) is a length-n binary string
where n = |V |. Moreover, the location of the 1’s indicates the subset of vertices that the verifier will
check in order to see if they form a k-clique.

Now suppose that G is the graph shown below which, along with k = 4, serves as the problem-instance
input to the verifier.

1 2 3 7

4 5 6 8

1. To convert verifier v to a Boolean formula F that is satisfiable iff G has a 4-clique, we first
encode the n = 8 bits of the certificate string using the variables x1, . . . , x8. For example,
if x1 = 1, then the certificate is indicating that vertex 1 as one of the vertices in a possible
4-clique. On the other hand, x1 = 0 means that the certificate is indicating that vertex 1 is not
a member of a possible 4-clique.

2. Although v’s code has not been provided, we can imagine that it would ultimately create a
Boolean formula for which the following would be asserted as true.

(a) for any distinct i and j for which (i, j) ̸∈ E, then

xi ∨ xj

must be true.

(b) S(x1, . . . , x8) stands for a Boolean formula for which

S(x1, . . . , x8) = 1 ⇔ (x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 = 4).

Note that a formula for S can be constructed by converting
∑8

i=1 xi = 4 to a Boolean
circuit that makes use of And, Or, and Not gates.

Use the above statements to write the Boolean formula F (x1, . . . , x8) that is satisfiable iff G has a
4-clique.

Solution.

7

3 More NP-Complete Problems

We now build on Cook’s theorem to show that a host of other problems are NP-complete (to this
date there are several thousand known NP-complete problems from several areas of computer science
and mathematics). We do this with the help of the following lemma. Its proof relies on the fact that
mapping reducibilities are transitive: if A ≤p

m B and B ≤p
m C, then A ≤p

m C.

Lemma 3.1. Suppose decision problems A and B are in NP, and A is both NP-complete and
polynomial-time reducible to B. Then B is NP-complete.

8

4 The 3SAT Logic Problem

In this Section we introduce the 3SAT logic problem which will which represents one of the more
important problems in all of Computer Science.

4.1 Boolean Variable Assignments

Before introducing the 3SAT decision problem, we need to understand the concept of a Boolean
variable assignment.

Boolean Variable A variable is said to be Boolean iff its domain equal {0, 1}. We use lowercase
letters, such as x, y, z, x1, x2, . . ., etc., to denote a Boolean variable.

Assignment An assignment over a Boolean-variable set V is a function α : V → {0, 1} that
assigns to each variable x ∈ V a value in {0, 1}. We may represent α using function notation,
or as a labeled tuple.

Example: for the assignment α that assigns 1 to both x1 and x2, and 0 to x3, we may use
function notation and write α(x1) = 1, α(x2) = 1, and α(x3) = 0, or we may use tuple notation
and write

α = (x1 = 1, x2 = 1, x3 = 0),

or
α = (1, 1, 0),

if the associated variables are understood.

Variable Negation If x is a variable, then x is called its negation.

Example: Suppose assignment α satisfies α(x1) = 0. Then (extending α to include negation
inputs) α(x1) = 1.

Literal A literal is either a variable or the negation of a variable .

Example: x1, x3, x3, are x5 all examples of literals.

Consistent A set R of literals is called consistent iff no variable and its negation are both in R.
Otherwise, R is said to be inconsistent.

Example: {x1, x2, x4, x7, x9} is a consistent set, but {x1, x2, x4, x7, x7} is an inconsistent set.

9

Induced Assignment If R = {l1, . . . , ln} is a consistent set of literals, then αR is called the
(partial) assignment induced by R and is defined by α(li) = 1 for all li ∈ R.

Example: the assignment induced by R = {x1, x2, x4, x7, x9} is

α = (x1 = 1, x2 = 0, x4 = 1, x7 = 0, x9 = 0).

10

Definition 4.1. A ternary disjunctive clause is a Boolean formula of the form

l1 ∨ l2 ∨ l3,

where l1, l2, and, l3 are literals. The clause evaluates to 1 in case at least one of l1, l2, or l3 is assigned
1. In this case we say the clause is satisfied. Otherwise it is unsatisfied.

Definition 4.2. An instance of the 3SAT decision problem consists of a set C of ternary disjunctive
clauses. The problem is to decide if there is an assignment α over the variables in C, such that every
clause (l1 ∨ l2 ∨ l3) in C evaluates to 1 under α. If such an assignment α exists, then it is said to be
a satisfying assignment and we say C is satisfiable. Otherwise, C is said to be unsatisfiable.
Finally, the 3SAT decision problem is the problem of deciding whether a set C of ternary clauses is
sastisfiable.

Simplified clause notation. In what follows, we often simplify the clause notation by writing each
clause (l1 ∨ l2 ∨ l3) as (l1, l2, l3).

Example 4.3. Provide a satisfying assignment for

C = {(x1, x2, x3), (x2, x3, x4), (x1, x2, x4), (x1, x3, x4), (x1, x2, x4), (x2, x3, x4), (x1, x3, x4),

(x2, x3, x4), (x2, x3, x4)}.

11

Theorem 4.4. SAT ≤p
m 3SAT.

Because 3SAT is a member of NP, we have the following corollary.

Corollary 4.5. 3SAT is an NP-complete problem.

Proof. We prove the theorem by making use of what is referred to as the Tseytin transformation,
named after the Russian mathematician Gregory Tseytin. It is a method for transforming an instance
F of SAT to an instance C of 3SAT that is satisfiability-equivalent to F , meaning that F is satisfiable
iff C is satisfiable. Let F (x1, . . . , xn) be an instance of SAT. Without loss of generality, we may
assume that F has a binary parse tree T . Let n1, . . . , nm denote the internal nodes of T , where we
assume n1 correpsonds with the root. We assign a literal to each tree node. If n is a leaf, then the
literal assigned to n is the literal l for which n is labeled. If n = ni is an internal node, then we
introduce a new variable yi and associate

it with ni.

Thus, the reduction f from SAT to 3SAT is such that f(F) = C, and the variables used in the clauses
of C are precisely x1, . . . , xn, y1, . . . , ym. Moreover the clauses of C are obtained from each internal
node. For example, let ni be an internal node, and suppose it’s two children have associated literals
l1 and l2. If ni is a ∧-operation, then the goal is to replace the formula

yi ↔ (l1 ∧ l2)

with a logically equivalent conjunction of disjunctive clauses. The same is true in the case that ni is
a ∨-operation: we must replace

yi ↔ (l1 ∨ l2)

with a logically equivalent conjunction of disjunctive clauses.

Finally, we add the clause y1 to assert that formula F evaluates to 1.

To see that f(F) = C is a polynomial-time reduction, we first note that C has a number of clauses
and variables that is linear in |F |. Is is because each formula of the form yi ↔ (l1∧ l2) or yi ↔ (l1∨ l2)
yields up to six disjunctive formulas. Thus f(F) can be constructed in a number of steps that is
linear with respect to |F |.

Secondly, if F is satisfiable, then there is an assignment α over x1, . . . , xn for which F (α) = 1.
Moreover, based on the recursive tree evaluation of

F (α), this computation of F (α) also yields a correpsonding assignment β over the internal y variables
in which y1 is assigned 1. Hence, α ∪ β is a satisfying assignment for C. Conversely, if α ∪ β is a
satisfying assignment for C, then, since the formulas of C represent a non-recursive representation
for evaluating F (x1, . . . , xn), it follows that α must satisfy F , since it induces a computation of each
node of F in which the root node is evaluated to 1, since β must assign y1 = 1 in order to satisfy
C.

12

Example 4.6. Apply the reduction described in Theorem 4.4 to the Boolean formula

F (x1, x2, x3) = x1 ∧ (x2 ∨ x3)).

Solution. We introduce Boolean variables y1 and y2, where y2 ↔ (x2∨x3), and y1 ↔ (x1∧ y2. Then
F (x1, x2, x3) is satisfiable iff

y1 ∧ (y1 ↔ (x1 ∧ y2)) ∧ (y2 ↔ (x2 ∨ x3))

is satisfiable. We now convert the latter to a logically-equivalent 3SAT-formula.

Step 1: replace P ↔ Q with (P → Q) ∧ (Q → P).

y1 ∧ (y1 → (x1 ∧ y2)) ∧ ((x1 ∧ y2) → y1) ∧ (y2 → (x2 ∨ x3)) ∧ ((x2 ∨ x3) → y2).

Step 2: replace P → Q with P ∨Q.

y1 ∧ (y1 ∨ (x1 ∧ y2)) ∧ ((x1 ∧ y2) ∨ y1) ∧ (y2 ∨ (x2 ∨ x3)) ∧ ((x2 ∨ x3) ∨ y2).

Step 3: apply De Morgan’s rule.

y1 ∧ (y1 ∨ (x1 ∧ y2)) ∧ (x1 ∨ y2 ∨ y1) ∧ (y2 ∨ (x2 ∨ x3)) ∧ ((x2 ∧ x3) ∨ y2).

Step 4: distribute ∨ over ∧.

y1 ∧ ((y1 ∨ x1) ∧ (y1 ∨ y2)) ∧ (x1 ∨ y2 ∨ y1) ∧ (y2 ∨ x2 ∨ x3) ∧ ((x2 ∨ y2) ∧ (x3 ∨ y2)).

Step 5: Repeat last literal enough times to make three literals per clause and use clause notation.

{(y1, y1, y1), (y1, x1, x1), (y1, y2, y2), (x1, y2, y1), (y2, x2, x3), (x2, y2, y2), (x3, y2, y2)}.

13

For the reduction from SAT to 3SAT, it’s fair to ask why it is necessary to add new y-variables and
through so many steps to transform F to a set of 3SAT clauses. For example, why not just map F to

{(x1, x1, x1), (x2, x3, x3)}?

The problem is that not all formulas are this simple, and some relatively simple formulas may require
an exponential number of steps if no new variables are introduced. As an example, consider the
formula

F (x1, . . . , x2n) = (x1 ∧ x2) ∨ (x3 ∧ x4) ∨ · · · ∨ (x2n−1 ∧ x2n).

This formula is in what is called disjunctive normal form (DNF) since it is an OR of AND’s.
Moreover, to convert it to a logically equivalent formula in conjunctive normal form (CNF), an
AND of OR’s, would require a number of steps that is exponential with respect to n. This is because
it’s logically equivalent CNF form has 2n clauses! Verify this for n = 2 and n = 3 by repeatedly
applying the distributive rule of ∨ over ∧.

Although it is seems lengthy even for the simplest of formulas, the reduction method used in
Example 4.6 has the advantage of requiring a maximum of C > 0 steps per logic operation of
F , where C is a constant. This is because all five steps of the procedure require only a constant
number of operations. Therefore, the reduction can be completed in O(|F |) steps which is a linear
(and hence a polynomial) number of steps with respect to the size of F .

14

5 Interdomain Reductions

In this section we look at interdomain mapping reductions that reduce a problem from one domain
to a problem in a different domain. Some of the different mathematical and computer science domains
include the following. include

Mathematics logic, graph theory, algegra and number theory, numerical optimization, geometry

Computer Science machine learning, network design and analysis, data storage and retrieval,
cryptography/security, operating systems, automata and languages, programming languages
and program optimization.

Of course, as is witnessed by interdomain reductions, different domains are often related in several
ways, and thus there is some subjectivity regarding the classifications of problems. Nevertheless, the
above mentioned domains are considered separate and vast areas of research. As we’ll see in the
following examples, interdomain reductions are often the more surprising and clever of all reductions.

The reductions we study in this section both reduce from the 3SAT logic problem. Because of the
ability to reduce 3SAT to other problem domains, 3SAT plays a crucial role in the study of NP-
completness which we cover in the next lecture.

15

The following theorem uses refers to Clique, the decsion-problem version of Max Clique. In this
case, an instance of the Clique is a simple graph G = (V,E) and an integer k ≥ 0. The problem is
to decide if there is a subset C ⊆ V of k vertices that are pairwise adjacent.

Theorem 5.1. 3SAT ≤p
m Clique. Therefore, since Clique is an NP problem, it is also NP-complete.

Proof. Let C be a collection of m clauses, where clause ci, 1 ≤ i ≤ m, has the form ci = li1∨ li2∨ li3.
We now define a mapping f(C) = (G, k = m) for which G has anm-clique if and only if C is satisfiable.
G = (V,E) is defined as follows. V consists of 3m vertices, one for each literal lij, 1 ≤ i ≤ m and
1 ≤ j ≤ 3. Then (lij, lrs) ∈ E iff i) i ̸= r and ii) lij is not the negation of lrs (i.e. the two literals are
logically consistent).

First assume that C is satisfiable. Given a satisfying assignment α for C, let liji , 1 ≤ i ≤ m, denote
a literal from clause i that is satisfied by α, i.e. α(liji) = 1. Then, since each pair of these literals is
consistent, (liji , lrjr) ∈ E for all i ̸= r. In other words,

C = {l1j1 , l2j2 , . . . , lmjm}

is an m-clique for G.

Conversely, assume G has an m-clique. Then by the way G is defined the clique must have the form

C = {l1j1 , l2j2 , . . . , lmjm}

where liji is a literal in ci. This is true since no two literal vertices from the same clause can be adjacent
and so each literal vertex in C must come from a different clause. Moreover, by the definition of G,
C is a consistent set of literals. Hence the assignment aC induced by C satisifes every clause of C,
since αC(liji) = 1 satisfies ci, for each i = 1, . . . ,m. Therefore, C is satisfiable.

Finally, we must show is that f(C) may be computed via an algorithm whose running time is
polynomial in m and n. But this can be done via two nested for-loops that iterate through each
pair of clauses i and r, i ̸= r, and identify all consistent pairs of literals (liji , lrjr). This require O(m2)
steps.

16

Example 5.2. Show the reduction provided in the proof of Theorem 5.1 for input instance

C = {(x1, x1, x2), (x1, x2, x2), (x1, x2, x2)}.

17

Theorem 5.3. 3SAT ≤p
m Subset Sum. Therefore, since SS is an NP problem, it is also NP-complete.

Let C be a collection of m ternary clauses over n variables. The following table provides the reduction
f(C) = (S, t). The table rows correspond to the (n +m)-digit integers comprising set S, while t is
the integer at the bottom whose first n digits are 1’s and whose final m digits are 3’s.

1 2 3 4 · · · n c1 c2 · · · cm
y1 1 0 0 0 · · · 0 1 0 · · · 0
z1 1 0 0 0 · · · 0 0 0 · · · 0
y2 1 0 0 · · · 0 1 0 · · · 0
z2 1 0 0 · · · 0 0 0 · · · 0
y3 1 0 · · · 0 1 1 · · · 0
z3 1 0 · · · 0 0 0 · · · 1
...

...
...

...
...

yn 1 0 0 · · · 0
zn 1 0 0 · · · 0
g1 1 0 · · · 0
h1 1 0 · · · 0
g2 1 · · · 0
h2 1 · · · 0
...

...
gm · · · 1
hm · · · 1

t 1 1 1 1 · · · 1 3 3 · · · 3

Number yi correpsonds to literal xi, while zi corresponds to literal xi. Thus, since the first n digits of
t are 1’s, we see that, to construct a subset A whose members sum to t, it must either contain yi or
zi, but not both. Also, the final m digits of yi (respectively, zi) indicate which clauses ci are satisfied
by xi (respectively xi).

Now suppose C is satisfiable via some assignment α. Then the subset A needed to sum to t includes
the following numbers. For 1 ≤ i ≤ n, if α(xi) = 1, then add yi to A; otherwise add zi to A. For
1 ≤ j ≤ m, to determine if gj and/or hj should be added to A, consider clause cj = {lj1, lj2, lj3} and
the sum

σj = α(lj1) + α(lj2) + α(lj3).

Since α satisfies C, we must have σj ≥ 1.

Case 1: σj = 1. In this case add both gj and hj for the cj-column to sum to 3.

Case 2: σj = 2. In this case add only gj for the cj-column to sum to 3.

Case 3: σj = 3. In this case neither gj nor hj need to be added since the cj-column already sums to 3.

. Therefore, it is always possible to find a subset A whose members sum to t.

18

Conversely, suppose there is a subset A ⊆ S whose members sum to t. Then for each i = 1, . . . , n,
either yi ∈ A or zi ∈ A, but not both. This is true since t’s first n digits are 1’s. Let α be an
assignment over the variables of C such that, for each i = 1, . . . , n α(xi) = 1 iff yi ∈ A. Now consider
clause cj, j = 1, . . . ,m. We know that the digits of the members of A in the cj-column sum to 3.
Thus, one of the members must either be yk or zk for some k = 1, . . . , n. In other words, either
yk ∈ A, xk ∈ cj, and α(xk) = 1 or zk ∈ A, xk ∈ cj and α(xk) = 1. In either case, we see that α
satisfies cj. Therefore, since j = 1, . . . , n was arbitrary, α satisfies C.

Finally, notice that each of the 2m+ 2n integers in S can be constructed in O(m+ n) steps, and so
f(C) = (S, t) can be computed in O(m2 + n2) steps.

19

Example 5.4. Show the reduction given in Theorem 5.3 using input instance

C = {c1 = (x1, x2, x3), c2 = (x1, x2, x3), c3 = (x1, x2, x3), c4 = (x1, x2, x3)}.

Solution.

1 2 3 c1 c2 c3 c4
y1 1 0 0 1 0 0 1
z1 1 0 0 0 1 1 0
y2 1 0 1 0 1 0
z2 1 0 0 1 0 1
y3 1 1 0 1 0
z3 1 0 1 0 1
g1 1 0 0 0
h1 1 0 0 0
g2 1 0 0
h2 1 0 0
g3 1 0
h3 1 0
g4 0 1
h4 0 1

t 1 1 1 3 3 3 3

20

Theorem 5.5. An instance of the Directed Hamilton Path (DHP) decision problem is a directed
graph G = (V,E) and two vertices a, b ∈ V . The problem is to decide of G possesses a directed
simple path from a to b and having length n− 1. Such a a path is called a (Directed) Hamilton
Path (DHP). Then DHP is NP complete.

Proof. The fact that DHP is in NP is an exercise from the Computational Complexity lecture. We
show a polynomial-time mapping reduction from 3SAT. Let C be a collection of m ternary clauses
over n variables. We proceed to define f(C) = (G = (V,E), a, b), a directed graph G = (V,E) along
with two vertices a, b ∈ V so that G has a Hamilton path from a to b iff C is satisfiable.

G is defined as follows (see the graph in Example 5.6 for a specific image of the following general
description). G has m clause vertices c1, . . . , cm and n diamond subgraphs, one corresponding to each
variable xi, 1 ≤ i ≤ n. Diamond subgraph Di consists of a top vertex ti, bottom vertex bi, left vertex
li, and right vertex ri, along with edges

(ti, li), (ti, ri), (li, bi), (ri, bi).

In addition, there is a row of 3m− 1 vertices that connect li with ri:

lci1, rci1, si1, lci2, rci2, si2 . . . , lcim, rcim.

The sij vertices, j = 1, . . . ,m − 1, are called separators, while the lcij and rcij pairs, j = 1, . . . ,m,
correspond with each of the m clauses and are used for making round-trip excursions to each of the
clause vertices. Every vertex in the row is bidirectionally adjacent to both its left and right neighbor,
i.e.,

(li, lci1), (lci1, rci1), (rci1, si1), . . . , (si(m−1), lcim), (lcim, rcim), (rcim, ri) ∈ E,

as well as the reversals of each of these edges. Finally, if xi is a literal of clause cj, then edges
(rcij, cj), (cj, lcij) are added. On the other hand, if xi is a literal of clause cj, then edges (lcij, cj), (cj, rcij)
are added.

Finally, for 1 ≤ i ≤ n − 1 the edges (bi, ti+1) are added to connect the n diamond subgraphs, and
a = t1, while b = bn. We leave it as an exercise to show that f(C) = (G = (V,E), a, b) can be
constructed in time that is polynomial with respect m and n. It remains to prove that C is satisfiable
iff f(C) = (G = (V,E), a, b) has a DHP from a to b.

Claim. Suppose P is a DHP from a to b. Then, for all i = 1, . . . , n − 1, P must visit every vertex
in Di before moving to a later diamond Dj, j > i.

Proof of Claim. Suppose by way of contradiction that P is a DHP from a to b, and let Di be the
first diamond where the path moves from Di to Dj, for some j > i, without having visited every
vertex in Di. The only way this can happen is if P moves from either vertex lcik or rcik in Di to
clause vertex ck, and then from there moves to either vertex lcjk or rcjk in Dj. In other words, the
clause vertex ck acts as a bridge between the two diamonds. Without loss of generality, assume that
P is moving from left to right through Di, then moves from lcik to ck, followed by moving to either
lcjk or rcjk. Now consider vertex rcik. The only vertex that has yet to be visited and can reach rcik

21

is separator vertex sik. Thus, rcik must immediately follow sik in P . But then there are no other
vertices that can be visited after rcik since both lcik and sik have been visited, which contradicts that
P is a DHP from a = t1 to b = bn. A similar argument holds if instead the path moves from rcik to
ck.

By the above claim, we see that, when forming a DHP, there is at most one direction (left-to-right
or right-to-left) that a path can move through a diamond Di and be able to visit some clause vertex
c. Moreover, based on how G was defined, the direction is left-to-right (respectively, right-to-left) iff
xi (respectively, xi) is a literal of c. For some path P that traverses through all the diamonds (and
perhaps some of the clause vertices), starting at a and finishing at b, let ∆(P) = (δ1, . . . , δn) denote
a binary vector, where δi denotes the direction that P takes (0 = left-to-right, 1 = right-to-left)
through diamond Di. We’ll call ∆(P) the signature of P . As an example, consider the path P
shown in Example 5.6 that is highlighted in green. Then its signature is ∆(P) = (0, 1) since it moves
left-to-right in the x1 diamond, and right-to-left in the x2 diamond.

Now suppose C is satisfiable via satisfying assignment α. Then there is a path P for which P i) has
signature ∆(P) = (α(x1), . . . , α(xn)), ii) visits every clause vertex exactly once, and iii) is a DHP
from a to b. To see this, consider a clause cj and let i be the least index for which α(xi) satisfies cj.
Then if, for example, α(xi) = 1, then xi is a literal of cj and, by the way in which G was defined, P
may move from right to left in Di and visit cj via the sequence rcij, cj, lcij. Therefore, every clause
clause vertex gets visited exactly once and P is a DHP from a to b.

Conversely, suppose P is a DHP in G and let ∆(P) = (δ1, . . . , δn) be its signature. Then the variable
assignment α defined by α(xi) = δi, i = 1, . . . , n, satisfies C. To see this, consider a clause cj and let
Di be the diamond from where P visits cj. Then by the way G was defined, P can either visit cj by
moving left-to-right, in which case xi is a literal of cj and α(xi) = δi = 0 satisfies cj, or by moving
right to left, in which case xi is a literal of cj and α(xi) = δi = 1 satisfies cj. In either case α satisfies
cj and, since j was arbitrary, we see that α satisfies C.

22

Example 5.6. The following graph shows f(C), where

C = {c1 = (x1, x2, x2), c2 = (x1, x2, x2), c3 = (x1, x2, x2)}

is an instance of 3SAT and f is the reduction reduction given in Theorem 5.5.

a

lc1 rc1 lc2 rc2 lc3 rc3

lc1 rc1 lc2 rc2 lc3 rc3

b

c1 c3

c2

x1
= 0 x

1 = 1

x2
= 0 x

2 = 1

23

Notice that C is satisfiable via assignment α = (x1 = 0, x2 = 1). Therefore, f(C) must have a
DHP from a to b. In fact, α gives directions for the path: go left in the x1-diamond, right in the
x2-diamond, and visit a clause vertex if i) it has yet to be visited and ii) the clause is satisified by
the direction of movement through the diamond. The figure below shows such a DHP in green.

a

lc1 rc1 lc2 rc2 lc3 rc3

lc1 rc1 lc2 rc2 lc3 rc3

b

c1 c3

c2

x1
= 0 x

1 = 1

x2
= 0 x

2 = 1

24

6 The “Package Delivery Problem” is NP-Complete

Theorem 6.1. The Hamilton Path (HP) decision problem is the same problem as DHP, but now
the edges of graph G are assumed undirected. HP is is NP complete.

Proof. The proof that HP is in NP is almost identical to that of showing it for DHP. Furthermore, we
may map reduce DHP to HP via the function f(G = (V,E), a, b) = (G′ = (V ′, E ′), a′, b′). To get G′

from G, we convert each vertex v ∈ V to three vertices in V ′: vin, vmid andn vout. Also we add add
to E ′ the undirected edges

(vin, vmid), (vmid, vout).

Also, for each directed edge (u, v) ∈ E, we add to E ′ the edge (uout, vin). Finally, a′ = ain while
b′ = bout. We leave it as an exercise to show that G has a DHP from a to b iff G′ has an HP from a′

to b′.

25

Example 6.2. Given the graph G shown below, provide f(G, a, b), where f is the mapping reduction
from DHP to HP.

a b

c d

26

Definition 6.3. An instance of the Hamilton Cycle (HC) decision problem is a simple graph G =
(V,E) and the problem is to decide if G has a Hamilton Cycle, i.e. a cycle that has length n = |V |
and visits every vertex in V .

Theorem 6.4. Hamilton Cycle is an NP problem and HP ≤p
m HC, making HC NP-complete.

Proof. Hamilton Cycle is an NP problem since, given an instance G = (V,E), a certificate would
be a permutation v1, v2, . . . , vn−1, vn of the vertices in V . A verifier can then check that each pair
(vi, vi+1) ∈ E, for each i = 1, . . . , n − 1, and also check that (vn, v1) ∈ E. This can be done in
O(m+ n) steps.

We now provide a mapping reduction from HP to HC. Let (G, a, b) be an instance of HP, where
G = (V,E) is a simple graph and a, b ∈ V with a ̸= b. Then f(G, a, b) = G′, where G′ is obtained
from G by adding an additional vertex u to G, as well as the undirected edges (b, u) and (u, a).
To show that this reduction is valid, suppose (G, a, b) is a positive instance of HP. Then there is a
Hamilton path P in G that starts at a, ends at b, and visits every vertex in G. Hence, C = P, u, a is
a Hamilton cycle for G′, since, once b is reached from a via path P , u is the only remaining vertex to
visit, followed by returning to a. Hence, G′ is a positive instance of HC. Conversely, assume G′ is a
positive instance of HC and, without loss of generality, assume the cycle begins at a and u is not the
next visited vertex. Therefore, u has to be the final visited vertex and b has to be the second-to-last
visited vertex before the cycle gets completed. Hence, C = a, . . . , b, u, a which means that the part
of C that is the path from a to b must be a Hamilton path from a to b. Therefore, (G, a, b) is a
positive instance of HP.

27

Theorem 6.5. An instance of the Traveling Salesperson (TSP) decision problem is a complete
weighted graph G = (V,E,w) and a number k, and the problem is to decide if there exists a Hamilton
cycle in G whose edge weights sum to a value that does not exceed k. Then TSP is NP-complete.

Proof. We leave it as an exercise to show that TSP ∈ NP. To show it is NP-complete, we map reduce
HC to TSP. Let G = (V,E) be an instance of HC, where n = |V | ≥ 3. Define f : HC → TSP by

f(G = (V,E)) = (G′ = (V,E ′, w), n),

where G′ is obtained by taking G and assigning weight 1 to each of its edges. Furthermore, for any
u, v ∈ V for which (u, v) ̸∈ E, we add the edge (u, v) to E ′ and assign it weight n. Thus, G′ is a
complete weighted graph.

We see that f is computable in O(n2) steps which is the number of steps needed to construct a
complete graph over n vertices. Also, if G has an HC, then G′ has an HC having cost n. Conversely,
if G′ has an HC with a cost of at most n, then this HC must only use unit-weight edges, which means
it only uses edges in E. Therefore, G has an HC.

28

Example 6.6. Given the graph G shown below, provide f(G), where f is the mapping reduction
from HC to TSP.

1 2 3

4 5 6

29

7 Summary

The following decision problems are all NP-complete: Clique, Independent Set (IS), Subset Sum

(SS), Set Partition (SP) , Hamilton Path (HP), Vertex Cover (VC), Half Vertex Cover (HVC),
Half Clique, SAT, 3SAT, Directed Hamilton Path (DHP), Hamilton Cycle (HC), Traveling Salesperson

(TSP). Below are the chains of mapping reductions that establish each problem as being NP-complete.

SAT ≤p
m 3SAT

3SAT ≤p
m Clique ≤p

m Half Clique,

Clique ≤p
m Independent Set,

3SAT ≤p
m Subset Sum ≤p

m Set Partition.

3SAT ≤p
m DHP ≤p

m HP ≤p
m HC ≤p

m TSP.

Also, Exercise 3 yields

Independent Set ≤p
m Vertex Cover ≤p

m Half Vertex Cover.

30

NP-Completeness Core Exercises

1. Given Boolean formula

F (x1, x2, x3, x4) = x1 ∧ (x2 ∨ (x3 ∧ (x1 ∨ x2) ∧ x4)),

draw its parse tree and provide two assignments α and β for which F (α) = 1 and F (β) = 0.

2. Provide the three 3SAT clauses whose conjunction is logicaly equivalent to the Boolean formula
x ↔ (y ∨ z).

3. Provide the three 3SAT clauses whose conjunction is logicaly equivalent to the Boolean formula
x ↔ (y ∧ z).

4. The transformation used in the reduction from SAT formula to 3SAT is referred as the Tseytin
transformation, named after the Russian mathematician Gregory Tseytin. Apply the Tseytin
transformation to the formula

F = x1 ∨ (x2 ∧ (x3 ∨ x1))

to obtain an instance of 3SAT.

5. Consider 3SAT instance

C = {c1 = (x1, x2, x3), c2 = (x1, x2, x3), c3 = (x1, x2, x3)), c4 = (x1, x2, x3)},

consider the polynomial-time mapping reduction f(C) = (G, k) from 3SAT to Clique described
in Theorem 5.1.

a. How many edges does G have?

b. What is the value of k? Does G have a k-clique? Explain and provide one if your answer
is “yes”.

6. For the polynomial-time reduction f from 3SAT to Clique described in Theorem 5.1, if an
instance C of 3SAT has 536 clauses and 243 variables, then, given (G, k) = f(C), how many
vertices does G have? Provide a good upper bound on G’s size (i.e. number of edges). What
is the value of k?

7. For the polynomial-time reduction f from 3SAT to Clique described in Theorem 5.1, how does
the reduction change if we reduce from 4SAT instead of 3SAT. Repeat the previous problem but
with the reduction coming from an instance of 4SAT.

8. Consider 3SAT instance

C = {c1 = (x1, x2, x3), c2 = (x1, x2, x3), c3 = (x1, x2, x3)), c4 = (x1, x2, x3)},

consider the polynomial-time mapping reduction f(C) = (S, t) from 3SAT to Subset Sum

described in Theorem 5.3.

a. Draw S and t as a table of values.

b. Does S have a subset that sums to t? Explain and provide one if your answer is “yes”.

31

9. For the reduction f : 3SAT → SS from 3SAT to Subset Sum provided in Theorem 5.3, if an
instance C of 3SAT has 275 clauses and 57 variables, then how many integers does the set S
have, where f(C) = (S, t)? What is the value of the target integer t?

10. For the reduction f : 3SAT → SS from 3SAT to Subset Sum provided in Theorem 5.3, suppose
an instance C of 3SAT has 57 clauses and 10 variables. Assuming f(C) = (S, t), what is the size
of the smallest subset of S that could possibly sum to the target value t. Explain. What is the
greatest size? Explain.

11. Consider the following 3SAT instance

C = {c1 = (x1, x4, x5), c2 = (x2, x3, x5), c3 = (x1, x2, x4), c4 = (x1, x3, x4), c5 = (x2, x3, x5),

c6 = (x1, x3, x5), c7 = (x2, x3, x4), c8 = (x1, x4, x5), c9 = (x2, x4, x5)), c10 = (x1, x4, x5)},

and consider the mapping reduction f : 3SAT → DHP described in Theorem 5.5.

a. Verify that C is satisfiable by finding a satisfying assignment.

b. Consider f(C) = (G, a, b) and let P be the directed Hamilton path from a to b that is
guaranteed by the mapping reduction. Indicate the direction (left or right) that the path
takes in each of the diamonds.

c. For each clause c, what it the earliest diamond from which c can be visited along path P?

12. For the graph G below, compute f(G, a, b) = (G′, a′, b′) where f is the mapping reduction from
DHP to HP. Draw G′ and verify that it has an HP from a′ to b′, since G has a DHP from a to b.

a c d e

f g b

13. For the graph G below, compute f(G) = (G′, k) where f is the mapping reduction from HC to
Traveling Salesperson. Draw G′, provide k, and verify that G′ has a Hamilton cycle whose
cost does not exceed k.

32

a b c

d e f

33

Solutions to NP-Completeness Core Exercises

1.

∧

x1 ∨

x2 ∧

x3 ∨

x1 x2

x4

2. We have
x ↔ (y ∨ z) ⇔ (x → (y ∨ z)) ∧ ((y ∨ z) → x) ⇔

(x ∨ y ∨ z) ∧ (y ∨ x) ∧ (z ∨ x) ⇔

(x ∨ y ∨ z) ∧ (y ∨ x ∨ x) ∧ (z ∨ x ∨ x).

3. We have
x ↔ (y ∧ z) ⇔ (x → (y ∧ z)) ∧ ((y ∧ z) → x) ⇔

(x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z ∨ x) ⇔

(x ∨ y ∨ y) ∧ (x ∨ z ∨ z) ∧ (y ∨ z ∨ x).

4. We have
y1 ∧ (y1 ↔ (x1 ∨ y2)) ∧ (y2 ↔ (x2 ∧ y3)) ∧ (y3 ↔ (x3 ∨ x1)).

Then use the previous two excercises to convert each double-arrow equivalence to CNF.

5. We must count the pairs of consistent vertices between vertex groups c1 − c2, c1 − c3, c1 − c4,
c2 − c3, c2 − c4, c3 − c4. The number of pairs of consistent vertices sums to

6 + 7 + 7 + 8 + 8 + 7 = 43

edges total. Also, k = |[C| = 4 and G does have a 4-clique since α = (x1 = 1, x2 = 1, x3 = 1)
satisfies C (a positive instance of 3SAT must map to a positive instance of Clique). One
such clique is C = {x1, x2, x1, x3}, where the i th literal listed in the set comes from clause ci,
i = 1, 2, 3, 4.

6. We have f(C) = (G = (V,E), k) where k = 536, |V | = 536× 3 = 1608 vertices, and at most

9(536)(535)

2
= 1, 290, 420

edges (yikes!).

34

7. If 4SAT were used instead of 3SAT, then every vertex group would have 4 (instead of 3) vertices.
Then have f(C) = (G = (V,E), k) where k = 536, |V | = 536× 4 = 2144 vertices, and at most

16(536)(535)

2
= 2, 294, 080

edges (yikes!).

8. We have the following table that describes the members of S and t.

1 2 3 c1 c2 c3 c4
y1 1 0 0 0 0 1 1
z1 1 0 0 1 1 0 0
y2 1 0 0 1 0 0
z2 1 0 1 0 1 1
y3 1 0 0 1 1
z3 1 1 1 0 0
g1 1 0 0 0
h1 1 0 0 0
g2 1 0 0
h2 1 0 0
g3 1 0
h3 1 0
g4 0 1
h4 0 1

t 1 1 1 3 3 3 3

Also, since α = (x1 = 0, x2 = 1, x3 = 1) satisfies C and a positive instance of 3SAT must map
to a positive instance of Subset Sum, (S, t) is a positive instance and

A = {z1, y2, y3, g1, h1, g2, g3, h3, g4, h4}

sums to t = 1, 113, 333 (verify!).

9. |S| = 2(57) + 2(275) = 664, and t = 1 · · · 13 · · · 3 has 57 1’s and 275 3’s.

10. The smallest subset of S that could possibly sum to t has a size equal to 10, since either yi or zi
must be selected (but not both) for i = 1, . . . , 10. This corresponds with every literal of every
clause being satisfied by some assignment. On the other hand, the largest subset could have
size equal to 2(57) + 10 = 124. This would be the case where, in addition to selecting a, yi or
zi, both filler numbers would also be selected for every clause. This corresponds with exactly
one literal of every clause being satisfied by some assignment.

11. We have the following.

a. α = (x1 = 1, x2 = 1, x3 = 0, x4 = 0, x5 = 1) satisfies C.
b. Since C is a positive instance of 3SAT, f(C) = (G, a, b) is a positive instance of DHP.

Moreover, according to α from part a, the path has the following signature: move right
in diamond 1, move right in diamond 2, move left in diamond 3, move left in diamond 4,
move right in diamond 5.

35

c. The earliest diamond from which clause c can be visited corresponds with the least index
i for which the assigned value to xi from α satisfies c. For c1, this would be diamond 4,
since x4 satisfies c1 and x1 does not. Similarly, for c2 it is diamond 2, since x2 satisfies c2.

12.

13.

36

Additonal Exercises

1. Recall the reduction from DHP to HP described in Theorem 6.1. Suppose this reduction only
used vin and vout for each vertex, but did not use vmid. Show by example that the mapping
reduction is no longer valid. In other words, including vmid is essential.

2. Consider the following practical application of a mapping reduction from HP to HC.

a. Rakesh’s logistics project requires that he determine whether or not a particular undirected
graph G = (V,E) has a Hamilton Path from vertex a to vertex b. Moreover, his colleague
Jennifer has implemented a function that takes as input a simple undirected graph G =
(V,E) and returns 1 iff G has a Hamilton Cycle. Jennifer says to Rakesh, “you may use
my function to get your answer, just make sure to add an edge (if one doesn’t already
exist) that connects a with b”. In other words, Jennifer has provided Rakesh with a way
to reduce his HP problem instance to an instance of HC. Give an example that shows that
the answer returned by Jennifer’s function might not coincide with the answer to Rakesh’s
original problem. Conclude that Jennifer’s reduction does not work.

b. What modification should Jennifer have asked Rakesh to make to his graph so that her
program’s answer would be sure to coincide with the answer to Rakesh’s original problem?

3. Provide a polynomial-time mapping reduction from Independent Set to Vertex Cover. Defend
your reduction: i) establish that it is computable in a polynomial number of steps with respect
to the size parameters of IS, and ii) argue that a positive (respectively, negative) instance of
IS maps to a positive (respectively, negative) instance of Vertex Cover. Hint: if C is a vertex
cover for G = (V,E) of size k, what can you say about the subset of vertices V − C?

4. Recall that an instance of Set Cover is a triple (S,m, k), where S = {S1, . . . , Sn} is a collection
of n subsets, where Si ⊆ {1, . . . ,m}, for each i = 1, . . . , n, and a nonnegative integer k. The
problem is to decide if there are k subsets Si1 , . . . , Sik for which

Si1 ∪ · · · ∪ Sik = {1, . . . ,m}.

Prove that Set Cover is an NP-complete problem. Hint: reduce from Vertex Cover.

5. For graph G shown below and k = 3 Compute f(G, k), where f is the mapping reduction from
VC to Set Cover from the previous exercise.

1 2 3

4 5 6

37

6. Let Double-SAT be the problem of deciding if a Boolean formula has at least two satisfying
assignments. Provide a polynomial-time reduction from SAT to Double-SAT.

7. Let C be a 3-CNF formula. A ̸=-assignment to C is a truth assignment that satisfies C, but in
such a way that every clause of C has at least one literal set to true, but also has one literal set
to false.

a. Prove that, if a is a ̸=-assignment, then so is its negation a, where the negation of an
assignment is the assignment that is obtained by negating each assignment value of a.

b. Let ̸=-SAT be the problem of deciding if a 3-CNF Formula has a ̸=-assignment. Prove
that 3SAT is polynomial-time mapping reducible to ̸=SAT, by mapping each clause ci of
the form (l1 ∨ l2 ∨ l3) to the two clauses

(l1 ∨ l2 ∨ zi) and (zi ∨ l3 ∨ b),

where zi is a newly introduced variable specific to ci, and b is a single new “global” variable.

8. An instance (S, C) of Set Splitting is a finite set S and a collection of subsets C = {C1, . . . , Cm}
of S. The problem is to decide whether or not S can be partitioned into two sets A and B such
that

a. S = A ∪B

b. A ∩B = ∅
c. Ci ∩ A ̸= ∅, for all i = 1, 2, . . . ,m

d. Ci ∩B ̸= ∅, for all i = 1, 2, . . . ,m.

Prove that Set Splitting is NP-complete. Hint: map reduce from ̸=-SAT.

Solutions to Additonal Exercises

1.

2. The problem is that Rakesh’s graph may not have a Hamilton path from a to b but still could
have a Hamilton cycle (give an example of such a graph). So, if he simply connects a to b,
then his graph will still be a negative instance of HP, but will be a positive instance of HC

and Jennifer’s algorithm will return an incorrect answer. To remedy this, Rakesh should add
a new vertex v′ to his graph, along with edges (a, v′) and (b, v′). Then, if his original graph
has a Hamilton path P from a to b, then P, v′, a yields a Hamilton cycle for his new graph.
Conversely, if his new graph has a Hamilton cycle, then the cycle must use the edges (a, v′)
and (b, v′) since they are the only edges incident with v′. In fact, the cycle can be written
C = a, v′, b, . . . , a, where b, . . . , a represents a Hamilton path from b to a, and so the reversal
of this path gives a Hamilton path from a to b. Therefore, Rakesh’s graph will be positive for
HP iff his modified graph is positive for HC and the mapping reduction is now valid.

38

3. Let G = (V,E) be a simple graph. The key insight is that G has an independent set I of size
k iff it has a vertex cover of size |V | − k. This is because every edge e ∈ E is incident with at
least one vertex that is not in I. If this were false, then there would be an edge that is only
incident with vertices in I which would imply that two vetices in I are adjacent, contradicting
the independence of I. Therefore, the mapping reduction is simply,

f(G = (V,E), k) = (G = (V,E), n− k),

where n = |V |. Assuming n is provided as part of the input, then f is computable in O(log n)
steps since we only need to subtract k from n. Finally, based on the above reasoning, G has a
k-independent iff f(G, k) = (G, n− k) has a vertex cover of size n− k.

4. We leave it as an exercise to prove that Set Cover is in NP. We now provide a polynomial-time
mapping reduction from Vertex Cover to Set Cover. Let (G = (V,E), k) be an instance of
VC. Without loss of generality assume V = {1, 2, . . . , n} and E = {e1, e2, . . . , em}, where each
edge ei is of the form (k, j) for some k, j ∈ V . We map this instance to the Set Cover instance
(S,m, k), where S = {S1, . . . , Sn}, and, for each i = 1, 2, . . . , n,

Si = {j|edge ej is incident with vertex i}.

In words, Si is the set of all (indices of) edges that are covered by vertex i. Based on these
definitions and the definition of the Set Cover decision problem, instance (S,m, k) is a positive
instance of Set Cover iff there are sets Si1 , . . . , Sik for which

Si1 ∪ · · · ∪ Sik = {1, . . . ,m}.

But this is equivalent to there being k vertices of G that cover all the edges in E. In other
words, (G = (V,E), k) is a positive instance of VC iff (S,m, k) is a positive instance of Set

Cover.

Finally, the mapping reduction requires O(m + n) steps to construct the sets in S from G =
(V,E), where m = |E| and n = |V |.

5. We first label each of G’s edges as is shown below. Note: please ignore the directions on each
edge. This is a technical error. Then f(G, k) = (S,m = 8, k = 3) is the instance of Set Cover

for which
S = {S1, . . . , S6}

and

S1 = {e1, e2}, S2 = {e1, e3, e9}, S3 = {e4, e5, e6}, S4 = {e2, e3, e4, e7}, S5 = {e7, e5, e8}, S6 = {e6, e8, e9}.

Then G has a vertex cover of size k = 3 iff (S,m = 9, k = 3) has a cover of size k = 3, since the
sets in the cover correspond with vertices in G, and the members of the sets correspond with
the edges of G.

39

1 2 3

4 5 6

e1

e2 e 3

e
9e4 e 5

e6

e7 e8

6. f(F) = F̂ , where F̂ = F ∧ (z ∨ z), where z is a variable that does not appear in F . Then F is
satisfiable iff F̂ has two satisfying assignments (one that sets z = 1, the other that sets z = 0).
In other words, F is a positive instance of SAT iff f(F) is a positive instance for Double-SAT.
Note also that f(F) can be computed in polynomial time, since we simply add two nodes to
F ’s tree.

7. a. Given ̸=-SAT instance C and ̸=-assignment α that satisfies C, for any c ∈ C we have
α(l1) = 0 and α(l2) = 1, where l1 and l2 are literals of c. Thus, α(l1) = 1 and α(l2) = 0
and so, since c was arbitrary, α is also a ̸=-assignment.

b. Let C be a satisifiable instance of 3SAT having variables x1, . . . , xn and clauses c1, . . . , cm.
Let α be a satisfying assignment for C. We can get a ̸=-assignment for f(C) over the
variables x1, . . . , xn, z1, . . . , zm, b, by extending α to α̂ in the following way. First, assign
α̂(b) = 0. Next, consider clause ci = (l1, l2, l3) of C.
Case 1: α(l1) = α(l2) = 0. Then α(l3) = 1, so assign α̂(zi) = 1. In this case, α̂ is a ̸=
assignment for

(l1 ∨ l2 ∨ zi) and (zi ∨ l3 ∨ b).

Case 2: α(l1) = 1 or α(l2) = 1. In this case assign α̂(zi) = 0. Then α̂ is a ̸= assignment
for

(l1 ∨ l2 ∨ zi) and (zi ∨ l3 ∨ b).

Thus, assigning b = 0 and the z’s in the above manner show that a positive instance of
3SAT maps to a positive instance of ̸=-SAT.

Conversely, now assume that f(C) has a ̸=-assignment α̂. Without loss of generality, we
may assume that α̂(b) = 0 (why?). Let ci ∈ C be arbitrary, where ci = (l1, l2, l3).

Case 1: α̂(zi) = 1. Then α̂(zi) = 0 which forces α̂(l3) = 1.

Case 2: α̂(zi) = 0. Then either α̂(l1) = 1 or α̂(l2) = 1.

Finally, let α denote the restriction of α̂ to the variables x1, . . . , xn. Then the above two
cases imply that, for each ci ∈ C, α assigns a literal of ci to 1. Therefore, C is a positive
instance of 3SAT.

8. We leave it as an exercise to prove that Set Splitting is in NP. Given C, an instance of ̸=SAT,
let x1, . . . , xn be its variables, and c1, . . . , cm its clauses. Then f(C) = (S, Ĉ) consists of set
S = {x1, x1, . . . , xn, xn}, while Ĉ consists of sets c1, . . . , cm, along with {x1, x1}, . . . , {xn, xn}.
Then if α is a ̸=-assignment for C, let A be the subset of literals l for which α(l) = 1. For

40

example, if α = (x1 = 1, x2 = 0, x3 = 1), then A = {x1, x2, x3}. Furthermore, let B = A be
the complement of all the literals of A. For example, if A = {x1, x2, x3}, then B = {x1, x2, x3}.
Clearly, A ∪ B = S, and both A and B intersect each of the sets of C. Indeed, since α is a
̸=-assignment, each clause c will contain a literal of A and a literal of B, while each set {xi, xi}
will have either xi ∈ A and xi ∈ B, or xi ∈ B and xi ∈ A.

Conversely, if there exist A and B for which S = A∪B, and A and B intersect all of the clauses
and literal sets {xi, xi}, then A and B must both be consistent sets of literals, since, for any
variable xi, neither can possess both xi and xi. Let αA be the assignment over {x1, . . . , xn}
induced by A, and βB the assignment induced by B. Then, β is the complement of α. Moreover,
since both α and β satisfy each clause (since A and B intersect each clause), we see that α is
a ̸=-assignment for C.
Finally, notice that the reduction can be performed in polynomial time, since the number of
sets in Ĉ is m+ n, which is linear in m and n, the size parameters of ̸=-SAT.

41

