Kleene’s Second Recursion Theorem and Self-Referencing
Programs

Last Updated May 1st, 2025

Kleene’s Second Recursion Theorem

“Know Thyself”

Socrates

Consider a computable function f(z,y), where z is viewed as a Godel number of some program and
y is some other input. The following are some statements that could be made in an informal program
that computes f.

Print the instructions of P,.

Simulate the computation of P, on input y.

Count the number of Jump instructions that are executed in the computation of P, on input
y.

Send program z and input y to another computer in the network.

Return, as a single natural-number encoding, the tuple of configurations that constitutes the
computation of P, on input y.

Now suppose we take f’s program statements and re-write them in a self-referencing way, to where
we get statements like the following ones.

Print my instructions.

Simulate myself on input y.

Count the number of Jump instructions that I execute when I'm computing input y.

Send myself and y to another computer in the network.

Return, as a single natural-number encoding, the tuple of configurations that constitutes my
computation on input y.

A program that makes one or more references to its own Godel number is said to be self-referencing
(or self-knowing). Note that this is not the same as a recursive program that makes one or more
calls to itself using smaller-sized inputs.

Catch-22 for a self-referencing program P

1. For P to know its Godel number, it must know each of its instructions.

2. Some instructions, such as “print myself”, requires P to know its Goédel number.

Proposed Solution to Catch-22

1. Assume for the sake of argument that, after replacing statements about z with statements
about itself, that there does in fact exist a program P, with Gédel number e that computes the
resulting function.

2. Then P, is a function of the single variable y (since variable = has been assigned constant e).

3. Therefore, we have, for all y,
Ge(y) = fle,y).

In other words, there is a program P, that, on input y computes f(e,y), and thus makes
references (to e which been substituted for z) to its own Godel number.

4. Thus, we have reduced the problem to that of finding a Godel number e that satisfies the above
equation.

5. Stephen Kleene’s second recursion theorem states that such an e does exist!

Kleene’s Second Recursion Theorem. Let f(x,y) be a computable function that takes as
input a Godel number z, and some additional input y. Then there is a Godel number e for which

de(y) = fle,y).

Example 1. Consider the URM computable function f(x,y) which, on inputs = and y, simulates
y steps of the computation P,(y), and returns the number of times that a jump instruction was
executed. Then by the 2nd recursion theorem, there is a program P, for which P.(y) = f(e,y), and
so, for input y, P. simulates y steps of itself on input .

Suppose P computes f(z,y), meaning P(x, y) = f(z,y) for all inputs x and y.

Proof of Kleene’s Second Recursion Theorem

The idea behind the proof is to divide the construction of the desired program P, = ABC' into three
parts: A, B, and C' which we now describe. Assume that y is the input to P,.

Part A. e Move y to register R,.
Place B’s Godel number b in R;.

Part B. e Use bin R; to compute A’s Godel number a.

Compute C’s Godel number c.

Compute
e=7(v""(a), 77 (0)7 () = 7(ABC) = y(P),
the Godel number of the concatenation of A’s, B’s, and C’s instructions.

e Place e in Ry, with y remaining in Rs.

Part C. Compute f(e,y).

Notes.

1. The most straightforward of the three is part C, since its sole purpose is to compute function
f(z,y) with x set to e. Since the theorem assumes that f(z,y) is URM computable, C’s
instructions consist of the instructions of the URM program used to compute f(x,y).

2. The clever part of the above program is understanding how A is able to compute B’s Godel
number and vice versa.

Computing A’s Godel number

For the moment, assume that B’s Godel number b is known. Then the following program does exactly
what A is supposed to do: take input y and move it to Ry and place b in R;.

A=T(1,2),5(1),5(1),....5(1).

b tiaes
Then
v(A) = B(T(1,2)), 8(5(1)), B(S(1)),.... B(S(1)) =
b ti?ﬁes
7(10,1,1,...,1 =210 4 212 4 ol4 4 ... 4 9l0%2b 1
AL

b times
201422 420 4 422 1 =200 44 42+ 4 -1 =

4b+1
10241 — | — 1
()

where we make use of the geometric-series formula

n) rn+& -1
Zrz:1+r+~~~+r”:
i=0

r—1

The above computation gives us the following lemma.

Lemma. Let k(z) denote the G6del number of the program that transfers the single input y into
register 2 and then places x into register 1. Then

4x+1
k(a:):1024(7)—1.

Corollary. If b is the Godel number of program B, then A’s Gédel number is k(b).

Computing B’s Godel number

Program B’s Goédel number b of may be computed by ~-encoding the following program.

Program B

Input Godel number z.
Compute Godel number k(z).
Compute ¢ = v(C).

Return v(771(k(2)), 77 (2),).

Important: notice that B’s program does not depend on knowing A’s Gédel number a. If it did, then
it would create a circularity error, since a = k(b) already depends on B’s Godel number. However,
B is able to compute a once it receives its own Godel number z = b as input since in this case the
first step of its algorithm (after reading input a) yields a = k(b).

Thus, we see that, after the execution of A on input y, B receives input z = b which gives
a = k(z) = k(b),
and so B outputs into R; the value

e=~(v"(a),y ' (b),7'(¢)) = v(ABC) = ~(P.).

The following diagram shows the results of all three programs combined in sequence, where v X w
means that program X inputs v and outputs w. Then we have

y 2 (b,y) B (e =(ABC),y) S fle = 7(ABC),y).

Therefore, P, = ABC' computes
be(y) = [fley),

and the proof is complete. O

The self Programming Statement

The Recursion theorem gives rise to a tool that may be used when writing a program P. Namely, we
may make reference to P’s Godel number, which is represented with the keyword self. This allows
for a program to become more autonomous and self-adaptable to its environment. For example, a
program can be made to analyze its own data, make adjustments to its program code, followed by
re-compilation and execution.

Example 2. The following are valid programming statements for program P.

void f(unsigned int y)
{
if(y == 0) {print("bad input!\n"); return;}

int length = instructions(self).length;
print("Hi! I have Godel number equal to ");
print(self);

print(".\nI have ");

print (length) ;

print (" instructions ");

if(y > length)
{
print (" which is fewer than your input ");
print(y);
}
else
{
print ("My instruction number ");
print(y);
print(" is ");
print (to_string(instructions(self) [y-1]));

print ("\n");

To justify such a program, suppose y € N is the input to P, and the purpose of P is to implement
the unary computable function f(y). Then we may do the following,.

1. Transform P by adding another input z, so that we are now implementing function f(x,y).

2. Replace each occurrence of self with x.

void f(unsigned int x, unsigned int y)

{
if(y == 0) {print("bad input!\n"); return;}

int length = instructions(x).length;
print("Hi! I have Godel number equal to ");
print (x);

print(".\nI have ");

print (length);

print (" instructions ");

if(y > length)
{

print (" which is fewer than your input ");
print(y);
}

else

{
print ("My instruction number ");
print(y);
print(" is ");
print (to_string(instructions(x) [y-1]));

print ("\n");

3. Use the method described in the proof of Kleene’s 2nd Recursion Theorem to compute an e for
which P, computes

be(y) = f(e,y).
4. Thus, P, computes f(y), with e substituted for z.

5. Therefore, P.’s references to self are justified, since self = e, the Godel number of the
program that computes f(y).

10

1 Self Reference Portrayed in Art and Mathematics

M.C. Escher’s “Drawing Hands”. 1948

11

M.C. Escher’s “Three Spheres”. 1946

Kurt Goédel: First-Order Peano Arithmetic (FOPA) is incomplete (i.e. not all true statements in
FOPA can be proven true) since there is a logical statement that can be expressed within FOPA and
that asserts it own unprovability within FOPA. Formula’s meaning: “I am not provable”.

12

Kleene’s 2nd Recursion Theorem and Undecidability

Recall that a predicate function is one whose codomain is {0, 1}. Moreover, associated with every
decision problem A is a predicate function dsq : A — {0,1}, called the decision function (or
indicator function) for A and for which

di(z) = 1 if x is a positive instance of A
AT 0 if 2 is a negative instance of A

Finally, we say that A is decidable iff function d4 is total URM-computable. In other words, there
is a URM program P, that

1. halts on all inputs,
2. has a range equal to {0,1}, and

3. for any input z, outputs 1 iff x is a positive instance of A.

On the other hand, if A’s decision function is not total URM computable, then A is said to be
undecidable.

Example. Consider the decision problem Even whose instances are natural numbers and where a
positive instance of Even is an even natural number. Then Even is decidable via Example 3.8 of the
Computability lecture.

13

1.1 Program properties

A decision problem A is said to decide a program property iff each instance x of A is interpreted
as a Godel number. Moreover, we say that program P, “has property A” iff d4(z) = 1.

The following are some examples of program properties.

Self Accept x has the Self Accept property iff P, accepts its own input: i.e. P.(z) = 1.
Halt x has the Halt property iff P, halts on its own input: i.e. P.(x) =J.
Total x has the Total property iff P, halts on all inputs.

Zero z has the Zero property iff ¢,(y) = 0 for all y € N.

14

The self programming construct that is made possible by Kleene’s 2nd Recursion theorem may be
readily used to prove the undecidability of most program properties.

The idea is outlined as follows.

1. Let A be a program property that we want to prove is undecidable.
2. Let d4(z) denote A’s decision function.
3. Assume A is decidable in which case da(z) is total computable.

4. Consider the following program P.

Input y € V.
If ds(self) =1, //P has property A.
Return a value that implies P does not have property A.
Else //d4(self) = 0 and thus P does not have property A.
Return a value that implies P does have property A.

5. Regardless of whether or not P has property A, a contradiction arises. Therefore, the assumption
that A is decidable must be false.

15

Example 3. An instance of the Halting Problem is a pair of numbers (z,y) and the problem is
to decide if P.(y) |, i.e. if program P, halts on input y. We prove that the Halting Problem is
undecidable.

Solution. Suppose Halting Problem is decidable, i.e.

1 ifyeW,
H(z,y) = { 0 otherwise

is total computable. Now consider the following program P.

Input y € V.
If H(self,y) =1, loop forever.

Return 1.

Let e = self denote the Godel number for P. Then P.(e) = 1 provided H (e, e) = 0 iff P.(e) does not
halt, a contradiction. Similarly, P.(e) does not halt provided H(e,e) = 1 iff P.(e) does halt, another
contradiction. Therefore, the assumption that Halting Problem is decidable must be false.

16

Example 4. Prove that the Total decision problem is undecidable. Also, give examples of programs
Py and P, for which dpyt,1(7(FP1)) = 1 and dpgi1(7(F2)) = 0.

Solution.

17

Example 4b. An instance of the decision problem One-to-One is a Godel number x, and the
problem is to decide if function ¢, is a one-to-one function, meaning that, for every z in the range of
¢z, there is exactly one y for which ¢,(y) = z. Consider the One-to-0One decision function

(z) = 1 if ¢, is one-to-one
g 1 0 otherwise

Evaluate g(z) for each of the following Godel number’s x.

1. x = ey, where ey is the Godel number of the program that computes the function ¢, (y) =
sgn(y). Hint: recall that sgn(y) equals 1 if y > 0, and equals 0 otherwise.

2. 1 = ey, where e, is the Godel number of the program that computes the function ¢, (y) = y>.

3. x = e3, where e3 is the Godel number of the program that computes ¢g(z) (assuming that g(x)
is URM computable).

Prove that g(x) is not URM computable. In other words, there is no URM program that, on input z,
always halts and either outputs 1 or 0, depending on whether or not ¢, is a one-to-one function. Do
this by writing a program P that uses g and makes use of the self programming construct. Then
show how P creates a contradiction.

18

Other Applications of Kleene’s 2nd Recursion Theorem

A subset A C NV of the natural numbers is said to be recursively enumerable iff there is a program
that can print all the members of A in a (possibly infinite) list, in no particular order. Also, we say
that decision problem A is recursively enumerable if the set of positive instances of A is recursively
enumerable.

Note: A is recursively enumerable iff there is a total computable function f for which A = range(f).
Example. Show that the set of even natural numbers is recursively enumerable.

Solution. The following program prints all even natural numbers.

Input z € N.

For each i = 0,1, ...

Print 2i.

19

Theorem. If decision problem A is decidable, then it is recursively enumerable.

Proof. Let da(z) denote A’s decision function. Since A is decidable there is a program P that halts
on all inputs, and for which P(z) = d4(z) for all z € A. Then the following program prints all the
positive instances of A.

For each i = 0,1, ...,

Simulate P on input .

If P(i) = 1, then print i.

20

Example. Show that Self Accept is recursively enumerable, i.e. we can print the set {i|P;(7) |}.

Solution. The idea is to simultaneously simulate all computations P;(7), s > 0. This is accomplished
by breaking up the process into rounds 0, 1, 2, ... where in Round ¢ we perform a simulation step for
each of Py(0),..., Pi(i). The following program does this.

Initialize infinite Boolean array printed so that printed[i| =0, for all i = 0,1,
Initialize infinite Configuration array config so that configli| =0, for all i =0, 1,

For each i = 0,1, ...,

For each j =0,1,...,1,
If printed[j] = 1, then continue. //j has already been printed
If 7 <, then
If is_final config]j], then
1. Print j.
2. printed[j] =1
Else config[j] = next_config(j, config|j]).

Else configli] = initial_config(i).

21

Program P, is said to minimal iff there is no y < « for which ¢, = ¢,. In other words, x is an index

for ¢, and there is no smaller index.

Example. Complete the following table.

Godel Number/index | Program Function | Minimal?
0 Py=2(1) ¢o(z) =0 | Yes

1 P =5(1) ¢1(z) =1 | Yes

2 P =T(11) | ¢2(z) =

3 Py =J(1,1,1) | ¢3(2) =1 | Yes

4 Py = Z(2) ¢a(z) =

5 P5=5(2) Ga(z) =

22

Theorem 3. If M denotes the set of all Gédel numbers x for which P, is minimal, then W is not
recursively enumerable.

Proof of Theorem 3. Suppose M is recursively enumerable. Then it is an exercise to show
that there is a total computable unary function f whose range is equal to M. In other words
M = {f(i)|i € N'}. Consider the following program P.

Input z € N.

For each i = 0,1, ...
If f(i) > self, then break.

Simulate program Py(; on input z, and return y in case Py (x) | y.

Let e be the Godel number of P. Then it follows that ¢. = ¢;). But f(i) > e which contradicts the
fact that f(i) € M. Therefore, the assumption that M is r.e. must be false.

23

Theorem 4. Let f be a total computable unary function. Then there is a number n € N for which
On = @fm)- We refer to n as a fixed point for f.

Proof of Theorem 4. Consider the following program P.

Input z € NV.
Compute y = f(self).

Simulate program P, on input x, and return z in case Py(z) | z.

Then
¢y = ¢f(se1f) = ¢se1f»

and so n = self is a fixed point for f.

24

An Application to Complexity Theory

The self programming construct may be applied to obtain a relatively simple proof of a fundamental
theorem in complexity theory called the Time Hierarchy Theorem.

Time Hierarchy Theorem. Let ¢(n) > nlogn be a computable function, for which the value ¢(n)
may be computed in O(#(n)) steps. Then there is a decision problem L that may be decided in
O(t(n)) steps, but cannot be decided in o(t(n)/logn) steps.

Corollary. For any positive integer & > 2, there is a decision problem that can be decided in O(n*)
steps, yet cannot be decided in O(n*~1) steps.

For example, there is a decision problem that can be decided within a cubic (i.e. O(n?)) number of
steps, yet cannot be decided within a quadratic (i.e. O(n?)) number of steps.

Space Hierarchy Theorem. Let s(n) > logn be a computable function, for which the value s(n)
may be computed with O(s(n)) amount of computer memory. Then there is a decision problem L
that may be decided using O(s(n)) amount of computer memory, but cannot be decided using only
o(s(n)) amount of memory.

25

Exercises

1. With respect to Kleene’s 2nd Recursion Theorem, prove that there are infinitely many values
e for which ¢.(y) = f(e,y). Hint: consider program B in the proof of the theorem.

2. Recall that a function f : N' — N is onto provided for every y € A there is an « € N for
which f(x) = y. Consider the function

| 1 if ¢, is onto
g(w) = { 0 otherwise

Evaluate g(a), g(b), and g(c), where

(a) ¢a(y) =y’
(b) ¢b(y) =1
(c) dc(y) =y.

3. Prove that the function

| 1 if ¢, is onto
9(r) = { 0 otherwise

is not URM computable. In other words, there is no URM program that, on input z, always
halts and either outputs 1 or 0 as output, depending on whether or not ¢, is onto. Do this by
writing a program P that uses g and makes use of the self programming construct.

4. Recall that W, denotes the domain of the function ¢,(y), i.e. the natural number inputs y to
¢, for which ¢, (y) is defined. Consider the function

g(x)_{ 1 ifW,=0

0 otherwise
Evaluate g(a), g(b), and g(c), where
(a) P, =5(2),5(2),5(1),J(1,2,6),J(1,1,3)
(b) P, =5(2),J(2,3,3),J(1,1,1)
(¢c) P.=5(1),5(1),5(2),J(1,2,6),J(1,1,1)

g(x):{ 1 ifW,=0

0 otherwise

5. Prove that the function

is not URM computable. In other words, there is no URM program that, on input z, always
halts and either outputs 1 or 0 as output, depending on whether or not ¢, has an empty domain.
Do this by writing a program P that uses g and makes use of the self programming construct.
Then show how P creates a contradiction.

1 if |E,l =0
g(w)Z{O ol

otherwise

6. Consider the function

In other words g(x) = 1 iff function ¢,(y) has an infinite range, meaning that it outputs an
infinite number of different values. Evaluate g(a), g(b), and g(c), where

26

7. Prove that the function
1 if |E =00
9(x) =19 ¢

otherwise

is not URM computable. In other words, there is no URM program that, on input z, always
halts and either outputs 1 or 0 as output, depending on whether or not ¢, has an infinite range.
Do this by writing a program P that uses g and makes use of the self programming construct.
Then show how P creates a contradiction.

8. Rice’s theorem states that if C; denotes the set of unary computable functions, and B is a
nonempty proper subset of C;, then the predicate function

B(@Z{ 1 if¢, €B

0 otherwise

is undecidable. Prove Rice’s theorem by writing an informal program P that uses B(x) and
makes use of the self programming construct. Then show how P creates a contradiction.
Hint: assume B(z) is decidable, and take advantage of the fact that the set of functions B is
both nonempty and not all of C;.

9. For each constant n > 1, show that |2'/"| is a primitive-recursive function of z.

10. Prove that there exists an n for which ¢,(z) = [#'/™|. Hint: use the s-m-n theorem and
Theorem 4.

11. Recall that program P, has the self-output property iff x € F,. By writing an informal program
that makes use of the programming construct self, prove that the self-output property is
undecidable.

12. Show that there is a number e for which ¢.(z) = €'°, for all z € N.

13. Consider the following description of a function f(n). On input n, return the Gédel number
of the program P’ that is the result of appending program P, with a minimum number of
successor instructions S(1),...,S(1) so that it is always guaranteed that, should P, halt on
an input, then the final instruction of P’ will be one of these successor instructions. Then by
the Church-Turing thesis, f is total computable. Moreover, prove that, if n is a fixed point for
f(n), ie. ¢n = @f(n), then necessarily ¢, () is undefined for all .

Exercise Solutions

1. Since the proof of Kleene’s 2nd Recursion Theorem constructs e as e = y(ABC'), by changing
the instructions of B, we get a new value for e, since B has changed. We only have to make
sure that B’s instructions are changed in a trivial way that does not affect its functionality as
described in the proof.

27

2. A function ¢,(y) is onto iff E, = N, where E, denotes the range of ¢,. Thus,

(a) g(a) = 0 since ¢,(y) = y* is not onto since E, = {1,4,9,25,...} # N,
(b) g(b) = 0 since ¢,(y) =1 is not onto since £, = {1} # N, and
)

(c) g(c) =1 since ¢.(y) = y is onto since E, = N.

3. We have the following program P.

Input y € V.
If g(self) =1, loop forever.
Return y;

If g(self) = 1, then P has a range equal to A which is impossible since it does not terminate
on any input (loops forever). If g(self) = 0, then P does not have a range equal to N, which
is contradicted by the fact that P returns y on input y, and so has the set of return values

(0,1,...) = \.

4. We have the following answers.

(a) g(a) = 0 since P, terminates on input 1 (verify!) and thus W, = {1} # 0.
(b) g(b) =1 since P, does not terminate on any input (why?) and thus Wj = 0.
(¢) g(c) =1 since P, does not terminate on any input (why?) and thus W, = 0.

5. We have the following program P.

Input y € V.
If g(self) = 1, Return 0.

Loop Forever.

If g(self) = 1, then it means W,

self = 0, but P returns 0 for each input y, which implies
Wit = N, a contradiction.

If g(self) = 0, then it means W ¢ # 0, but P loops forever on each input y, which implies

Wieip = 0, a contradiction.

6. We have the following answers.

(a) g(a) =1 since ¢,(y) = y? has an infinite range: £, = {1,4,9,25,...},
(b) g(b) = 1 since ¢(y) = y has an infinite range E, = N, and
(¢) g(c) =0 since ¢.(y) = sgn(y) has finite range equal to {0, 1}.

7. Consider the following program P.

Input y € V.
If g(self) = 1, Return 0.
Return y.

28

10.

11.

If g(self) = 1, then it means |E . ¢| = oo, but the program returns 0 for each input y, which
implies Eg.; = {0} which is finite, a contradiction.

If g(self) = 0, then it means |Egg¢| is finite, but the program returns y on each input y, which
implies Eg.j¢ = N, a contradiction.

Assume B(z) is decidable. Since B is nonempty there exists a unary computable function
f € B. Similarly, since B is not all of C;, there is a unary computable function g ¢ B. Now
consider the following program P.

Input z € N.
If B(self) =1,
Simulate g on input x.
Return g(x) if it is defined.
Simulate f on input x.
Return f(x) if it is defined.

Since f and g are computable, so is P. Let e denote the Gédel number of P. Assume B(e) = 1.
By definition, this means that ¢. € B. But in examining P we see that P simulates g so that
¢. = g ¢ B, a contradiction. Similarly, if B(e) = 0, then ¢, ¢ B. But in this case P simulates
f so that ¢. = f € B, a contradiction. Therefore, B cannot be decidable.

The function [2'/"| may be computed as

p(z <z)(z" >x)—1.

Function f(n,z) = |2'/"| is computable by the previous exercise. Therefore, by the s-m-n
theorem, there exists a total computable function k(n) for which ¢y, (z) = [2'/"]. Finally, by
Theorem 4, there is an integer n for which

On(®) = dun (@) = |2V
Assume E(z) is decidable, where E(z) = 1 iff z € E,. Now consider the following program P.

Input z € V.
If E(self) =1,
Loop forever.

Return self.

Since E(x) is decidable, P is computable. Let e denote the Gddel number of P. Assume
E(e) = 1. By definition, this means that e € FE., meaning that P returns e on some input
x. However, since E(e) = 1, P does not terminate on any input, meaning that E, = (), a
contradiction.

Similarly, if F(e) = 0, then e ¢ FE.. But in this case P returns e, meaning that e € E,, a
contradiction. Therefore, F(z), i.e. the Self-Output property, is not decidable.

29

12.

13.

Function f(y,z) = y'° is primitive recursive, and hence computable. Therefore, by the s-m-n
theorem, there exists a total computable function k(y) for which ¢g)(z) = y'°. Finally, by
Theorem 4, there is an integer e for which

Pe(T) = Ppey(z) = €
for all z € N.

Since f(n) is total computable, by Theorem 4 there is an integer n for which ¢,(z) = ¢ ()
for all x € N/. But the way in which Godel number f(n) is constructed is such that, whenever
¢n(z) =y is true, then P, halts, which in turn implies that Py, halts with ¢ (z) =y +1,
since Py, is the same as P,, except that in its final instruction it adds 1 to register R;. Thus,
if ¢,,(x) is defined, then we have ¢,(x) = y # ¢yn)(x) = y + 1. Therefore, we must conclude
that ¢,(x) must always be undefined, meaning that W,, = (.

30

