
Theoretical Concepts of Computer Science
Review Topics

Last Updated: August 26th, 2024

1 Notation Review

1.1 Logic

Boolean Operations.

Let a and b denote Boolean values (either 0 or 1).

And a ∧ b evaluates to 1 iff a = b = 1

Inclusive Or a ∨ b evaluates to 1 iff either a = 1 or b = 1 (or both)

Exclusive Or a⊕ b evaluates to 1 iff either a = 1 or b = 1 (but not both)

Not a evaluates to 1 iff a = 0.

Conditional a → b evaluates to 1 iff either a = 0 or b = 1 (or both)

Equivalence a ↔ b evaluates to 1 iff a = b.

Definition 1.1. A Boolean expression (equivalently, Boolean formula) is any expression whose
operations are all Boolean, and whose terminals are either 0, 1, or any Boolean variable.

1



Example 1.2. Assuming a, b, c are Boolean variables, then

(b ∨ 1) → (a ∧ c)

is a Boolean expression.

Definition 1.3. Two Boolean expressions p and q are said to be logically equivalent, denoted
p ⇔ q, iff they depend on the same set of variables and always evaluate to the same Boolean value,
regardless of how the variables are assigned.

Common Logical Equivalences

Assume that p, q, and r are Boolean expressions.

Equivalence Name
p ∧ 1 ⇔ p Identity
p ∨ 0 ⇔ p
p ∨ 1 ⇔ 1 Domination
p ∧ 0 ⇔ 0
p ∨ p ⇔ p Idempotency
p ∧ p ⇔ p
p ⇔ p Double negation
p ∨ q ⇔ q ∨ p Commutativity
p ∧ q ⇔ q ∧ p
(p ∨ q) ∨ r ⇔ p ∨ (q ∨ r) Associativity
(p ∧ q) ∧ r ⇔ p ∧ (q ∧ r)
p ∨ (q ∧ r) ⇔ (p ∨ q) ∧ (p ∨ r) Distributivity
p ∧ (q ∨ r) ⇔ (p ∧ q) ∨ (p ∧ r)

(p ∨ q) ⇔ p ∧ q De Morgan

(p ∧ q) ⇔ p ∨ q

2



1.2 Sets

Definition 1.4. A set represents a collection of items, where each item is called a member or
element of the set.

List Notation the most common way to represent a set where the set members are listed one-by-
one, and the list is delimited by braces. For example,

{2, 3, 5, 7, 11}

uses list notation to describe the set consisting of all prime numbers that do not exceed 11. Note
that the order in which the members are listed does not matter. Indeed the sets {2, 3, 5, 7, 11}
and {3, 11, 5, 2, 7} are identical. Also, each member occurs only once in the set, meaning that,
e.g. {1, 2, 2, 3, 3, 3} = {1, 2, 3}.

Informal List Notation uses ellipsis . . . to indicate that a pattern is to be continued in the list,
either indefinitely or up to some value.

Common Numerical Sets 1. N = {0, 1, 2, . . .}
2. I = {0,±1,±2, . . .} = {. . . ,−2,−1, 0, 1, 2, . . .}
3. Q = {p/q | p, q ∈ I ∧ q ̸= 0}

Empty Set the set having no members and denoted by ∅.

Membership Symbol x ∈ A indicates that item x is a member of set A.

Containment Symbol A ⊆ B means that A is a subset of B. In other words, every member of A
is also a member of B. Note: trivially, ∅ ⊆ B for every set B.

Proper Containment Symbol A ⊂ B means that A is a subset of B but that there is some
member of B that is not a member of A. In this case we say that A is a proper subset of B.

Set Equality A = B iff A ⊆ B and B ⊆ A are both true statements.

Example 1.5. The following are some examples of informal list notation.

1. The set of prime numbers less than 100 may be written as

{2, 3, 5, 7, 11, . . . , 97}.

2. N denotes the set of natural numbers {0, 1, 2, . . .}.

3. I denotes the set of integers

{0,±1,±2, . . .} = {. . . ,−2,−1, 0, 1, 2, . . .}.

3



Example 1.6. The following are all true statements.

1. 61 ∈ {2, 3, 5, 7, 11, . . . , 97}.

2. 39 ̸∈ {2, 3, 5, 7, 11, . . . , 97}.

3. {3} ∈ {∅, {1}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}

4. 3 ̸∈ {∅, {1}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}

Example 1.7. Sets {3} and {1, 3} are proper subsets of {1, 2, 3}, while {1, 2, 3} is a subset of {1, 2, 3},
but not a proper subset.

Example 1.8. Neither set A = {2, 3, 6, 7} nor set B = {2, 3, 5, 7, 11, 13, 17} is a subset of C =
{2, 3, 5, 7, 11, 13} since 6 ∈ A but 6 ̸∈ C, and 17 ∈ B but 17 ̸∈ C.

4



Example 1.9. A = {{1, 2}, {3, 4}, {3, 5}} is not a subset of B = {1, 2, 3, 4, 5} since, e.g., {1, 2} ∈ A
but {1, 2} ̸∈ B. This is true since {1, 2} is a set, and B’s members are the natural numbers 1 through
5 which are not sets.

Example 1.10. Given B = {2, {3, 7}, 3, 4, {5}, {6, 8, 9}}, all of the following statements are true.

a. {2, 4} ⊆ B.

b. {3, 7} ̸⊆ B.

c. 9 ̸∈ B.

d. {5} ∈ B.

5



Set Operations.

Union x ∈ A ∪B iff either x ∈ A or x ∈ B (or both)

Intersection x ∈ A ∩B iff x ∈ A and x ∈ B

Complement x ∈ A iff x ̸∈ A

Difference x ∈ A−B iff x ∈ A and x ̸∈ B

Symmetric Difference x ∈ A⊕B iff x ∈ A or x ∈ B, but not both; i.e. A⊕B = (A−B)∪(B−A)

Cartesian Product (a, b) ∈ A×B iff a ∈ A and b ∈ B

Power Set The power set of a set S, denoted P(S) is the set of all subsets of S. Note that if
|S| = n < ∞, then |P(S)| = 2n, since, for each of the n members of S, one has a binary choice
as to whether or not to add the member to the subset. This makes a total of

2× 2× · · · × 2︸ ︷︷ ︸
n times

= 2n

different possible subsets.

Example 1.11. Given sets A = {1, 3, 5, 6, 7, 9} and B = {0, 2, 4, 5, 6, 7, 8, 10}, we have A ∪ B =
{0, 1, 2, . . . , 10}, A ∩B = {5, 6, 7}, A−B = {1, 3, 9}, and A⊕B = {0, 1, 2, 3, 4, 8, 9, 10}.

Example 1.12. Let E denote the set of all even integers. Compute N∪E, N∩E, N−E, E−N, and
N⊕ E.

Example 1.13. Given setsA = {a, b}, B = {1, 2, 3}, thenA×B = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)}.

Example 1.14. For S = {1, 2, 3} we have

P(S) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

6



1.3 Functions

Definition 1.15. A function f : A → B is a set A, a set B, and a relationship between the two
sets such that, for each a ∈ A, there is a unique b ∈ B that is associated with a. In this case we
write f(a) = b.

The following is some terminology and notation that is used to describe functions.

� A is called the domain of f .

� B is called the codomain of f .

� f : A → B is a notation that indicates f is a function that has domain A and codomain B.

� f(x) is a common notation that is used when both the domain of x (and hence f) and the
codomain of f are already understood.

� f(a) = b indicates that b ∈ B is the unique member of the codomain that is associated with
domain member a ∈ A. Also, a is called a preimage of b under f . It is also common to call a
the input and f(a) = b its assigned output.

Like variables, every function has a name, and it is common to use generic names, such as f , g, and
h, when speaking of some arbitrary (i.e. no one in particular) function, just as it is common to use
names like x, y, and z to represent an arbitrary variable.

Example 1.16. Consider the function grade : Student → G that assigns student s ∈ Student a
letter grade from the set G = {a, b, c, d, f}, where

Student = {Ann,Ethan, Jaspinder,Pam}.

Thus, Student is the domain of grade, and G is its codomain. Finally the student grades assigned
by grade are grade(Ann) = a, grade(Ethan) = c, grade(Jaspinder) = c, and grade(Pam) = b.

Example 1.17. Let S denote the set of students attending a university, I the set of instructors
at the university, and s a variable whose domain is S. For a student s attending a university, let
ins(s) denote the instructor of the first calculus course that s enrolled in at the university. Then
ins : S → I is not a function because not every student (e.g. a student majoring in music) will
elect to take calculus at the university. A function must assign every member of the domain to some
member of the codomain.

7



1.4 Graphs

A Graph is a pair of sets V , E, where

Graph G = (V,E) V is a set of vertices, also called nodes, while E is a set whose members are
pairs of vertices and are called edges. Each edge may be written as a tuple of the form (u, v),
where u, v ∈ V .

Adjacency and Incidence If e = (u, v) is an edge, then we say that u is adjacent to v, and that
e is incident with u and v.

Order |V | = n is called the order of G.

Size |E| = m is called the size of G.

Path A path P of length k in a graph is a sequence of vertices P = v0, v1, . . . , vk, such that
(vi, vi+1) ∈ E for every 0 ≤ i ≤ k − 1.

Simple Path P = v0, v1, . . . , vk and the vertices v0, v1, . . . , vk are all distinct.

Cycle A cycle is a path that begins and ends at the same vertex.

Geometrical Representation obtained by representing each vertex as a figure (usually a circle)
on a two-dimensional plane, and each edge e = (u, v) as a smooth arcs that connects vertex u
with vertex v.

Degree The degree of a vertex v, denoted as deg(v), equals the number of edges that are incident
with v. Note: loop edges are counted twice.

Example 1.18. Let G = (V,E), where

V = {SD, SB, SF, LA, SJ,OAK}

are cities in California, and

E = {(SD,LA), (SD, SF ), (LA, SB), (LA, SF ), (LA, SJ), (LA,OAK), (SB, SJ)}

are edges, each of which represents the existence of one or more flights between two cities. Figure 1
shows a graphical representation of G. G has order 6 and size 7.

Figure 2 shows a simple path of length 4. Figure 3 shows a cycle of length 3. Let’s verify the
Handshaking theorem.

deg(SF) + deg(LA) + deg(SD) + deg(OAK) + deg(SJ) + deg(SB) =

2 + 5 + 2 + 1 + 2 + 2 = 14 = 2 · 7 = 2|E|.

8



SF OAK

LA SJ

SD SB

Figure 1: Graphical Representation of G

SF OAK

LA SJ

SD SB

Figure 2: Simple path (in red) P = SF,SD,LA,SJ,SB of length 4

9



SF OAK

LA SJ

SD SB

Figure 3: Cycle (in red) C = SF,SD,LA,SF of length 3

1.5 Big-O Notation

Big-O notation is useful for making statements about the growth of a function f(n), n a natural
number, whose values may seem difficult or impossible to compute. The statements we care most
about are those that state upper and/or lower bounds on f ’s growth. Although we may not know the
exact bounds (since we may not know the exact values of f), we may be able to determine meaningful
ones in case we know the following two things:

1. the rule, call it g(n), for the fastest growing term (ignoring constants) of the bounding function,
and

2. that there exists a constant c > 0 such that, cg(n) provides a bound for f , for sufficiently large
n.

10



Example 1.19. Carol has programmed the Insertion Sort algorithm to run on her laptop. What
upper bound can she provide on the elapsed time t(n) that will occur on her laptop clock after
Insertion Sort has sorted an integer array of size n? She knows that the worst case occurs when
the input array is sorted in reverse order, and in this case a total of

n(n− 1)

2
=

n2

2
− n

2

comparisons and swaps must be performed in order to sort such an array. In this case, the rule for
the fastest growing term of the upper-bounding function is g(n) = n2. Also, she knows that each
comparison and swap requires at most two machine instructions, and that each machine instruction
requires at most 10−8 seconds to execute. Therefore, there is a c > 0 such that cg(n) is an upper
bound for the elapsed time.

11



Let f(n) and g(n) be functions from the set of nonnegative integers to the set of nonnegative real
numbers. Then

Big-O f(n) = O(g(n)) iff there exist constants c > 0 and k ≥ 1 such that f(n) ≤ cg(n) for every
n ≥ k.

Big-Ω f(n) = Ω(g(n)) iff there exist constants c > 0 and k ≥ 1 such that f(n) ≥ cg(n) for every
n ≥ k.

Big-Θ f(n) = Θ(g(n)) iff f(n) = O(g(n)) and f(n) = Ω(g(n)).

little-o f(n) = o(g(n)) iff lim
n→∞

f(n)
g(n)

= 0.

little-ω f(n) = ω(g(n)) iff lim
n→∞

f(n)
g(n)

= ∞.

12



Definition 1.20. The following table shows the most common kinds of rules for g(n) that are used
within big-O notation.

Function Type of Growth
1 constant growth
log n logarithmic growth

logk n, for some integer k ≥ 1 polylogarithmic growth
nk for some positve k < 1 sublinear growth
n linear growth
n log n log-linear growth

n logk n, for some integer k ≥ 1 polylog-linear growth

nj logk n, for some integers j, k ≥ 1 polylog-polynomial growth
n2 quadratic growth
n3 cubic growth
nk for some integer k ≥ 1 polynomial growth
2log

c n, for some c > 1 quasi-polynomial growth
ω(nk), for all integers k ≥ 1 superpolynomial growth
an for some a > 1 exponential growth

Example 1.21. Returning to Example 1.19, using big-O notation Carol can say that, when running
Insertion Sort on her laptop with an input of size n, the elapsed time equals O(n2) seconds. Also,
since Insertion Sort requires at least n comparisons for any input, she may also say that its running
time equals Ω(n) seconds.

Given a problem L, and an algorithm A that solves L, big-O notation finds its use in the study of
algorithms as a means for describing bounds on the number of steps and the amount of memory
required by A as a function of the size parameters of L, i.e. the parameters used to indicate the
number of bits required to represent an instance of L.

Example 1.22. The following are examples of how big-O notation arises in the study of data
structures and algorithms.

1. Inserting an item into a balanced tree of size n requires O(log n) comparisons.

2. It has been proven that, sorting n numbers using pairwise comparisons requires Ω(n log n)
comparisions.

3. The Fast Fourier Transform algorithm has a running time of Θ(m logm), where m is the degree
of the input polynomial.

4. Two b-bit integers may be recursively added/subtracted in O(b) steps and recursively multiplied/divided
in O(b2).

13



It is also common to see big-O notation used within an arithmetic expression, such as n2 + o(n), and

nO(1).

14



2 Algorithmic Techniques

2.1 Divide-and-Conquer

A divide-and-conquer algorithm A follows the following general steps.

Base Case If the problem instance is O(1) in size, then use a brute-force procedure that requires
O(1) steps.

Divide Divide the problem instance into one or more subproblem instances, each having a size that
is smaller than the original instance.

Conquer Each subproblem instance is solved by making a recursive call to A.

Combine Combine the subproblem-instance solutions into a final solution to the original problem
instance.

The following are some problems that can be efficiently solved using a divide-and-conquer algorithm.

Binary Search locating an integer in a sorted array of integers

Quicksort and Mergesort sorting an array of integers

Order Statistics finding the k th least or greatest integer of an array

Convex Hulls finding the convex hull of a set of points in Rn

Minimum Distance Pair finding two points from a set of points in R2 that are closest

Matrix Operations matrix inversion, matrix multiplication, finding the largest submatrix of 1’s in
a Boolean matrix.

Fast Fourier Transform finding the product of two polynomials

Maximum Subsequence Sum finding the maximum sum of any subsequence in a sequence of
integers.

Minimum Positive Subsequence Sum finding the minimum positive sum of any subsequence in
a sequence of integers.

Multiplication of Binary Numbers finding the product of two binary numbers

15



2.2 Graph Traversals

Types of traversals: depth first, breadth first, and best first

The following are some problems that can be efficiently solved using one or more graph traversals.

Reachability determining if a vertex in a graph is reachable from another vertex

Distance finding the minimum-length path between two vertices

Connectivity finding the connected components of a graph

Topological Sort sorting the vertices of a DAG

2.3 Greedy Algorithms

A greedy algorithm is often considered the easiest of algorithms to describe and implement, and
is characterized by the following two properties:

1. the algorithm works in successive stages, and during each stage a choice is made that is locally
optimal

2. the sum totality of all the locally optimal choices produces a globally optimal solution

If a greedy algorithm does not always lead to a globally optimal solution, then we refer to it as a
heuristic, or a greedy heuristic. Heuristics often provide a “short cut” (not necessarily optimal)
solution.

The following are some computational problems that that can be efficiently solved using a greedy
algorithm.

Huffman Coding finding a code for a set of items that minimizes the expected code-length

Minimum Spanning Tree finding a spanning tree for a graph whose weighted edges sum to a
minimum value

Single source distances in a graph finding the distance from a source vertex in a weighted graph
to every other vertex in the graph

Fractional Knapsack selecting a subset of items to load in a container in order to maximize profit

16



Task Selection finding a maximum set of timewise non-overlapping tasks (each with a fixed start
and finish time) that can be completed by a single processor

Unit Task Scheduling with Deadlines finding a task-completion schedule for a single processor
in order to maximize the total earned profit

2.4 Dynamic Programming

A dynamic-programming algorithm is similar to a divide-and-conquer algorithm in that it
attempts to solve a problem instance by relating it to the solutions of sub-problem instances via a
recurrence equation. For such an equation a subproblem-instance solution may need to be referenced
several times. For this reason, each subproblem-instance solution is stored in a table for future
reference.

The following are some problems that may be solved using a dynamic-programming algorithm. All
except for the 0-1 Knapsack solution are efficient algorithms.

0-1 Knapsack Given items x1, . . . , xn, where item xi has weight wi and profit pi (if it gets placed
in the knapsack), determine the subset of items to place in the knapsack in order to maximize
profit, assuming that the sack has weight capacity M .

Longest Common Subsequence Given an alphabet Σ, and two words X and Y whose letters
belong to Σ, find the longest word Z which is a (non-contiguous) subsequence of both X and
Y .

Optimal Binary Search Tree Given a set of keys k1, . . . , kn and weights w1, . . . wn, where wi is
proportional to how often ki is accessed, design a binary search tree so that the weighted cost
of accessing a key is minimized.

Matrix Chain Multiplication Given a sequence of matrices that must be multiplied, parenthesize
the product so that the total multiplication complexity is minimized.

All-Pairs Minimum Distance Given a directed graph G = (V,E), find the distance between all
pairs of vertices in V .

Polygon Triangulation Given a convex polygon P =< v0, v1, . . . , vn−1 > and a weight function
defined on both the chords and sides of P , find a triangulation of P that minimizes the sum of
the weights of which forms the triangulation.

Bitonic Traveling Salesperson given n cities c1, . . . , cn, where ci has grid coordinates (xi, yi), and
a cost matrix C, where entry Cij denotes the cost of traveling from city i to city j, determine a
left-to-right followed by right-to-left Hamilton-cycle tour of all the cities which minimizes the
total traveling cost. In other words, the tour starts at the leftmost city, proceeds from left to
right visiting a subset of the cities (including the rightmost city), and then concludes from right
to left visiting the remaining cities.

17



Viterbi’s algorithm for context-dependent classification Given a set of observations x⃗1, . . . , x⃗n

find the sequence of classes ω1, . . . , ωn that are most likely to have produced the observation
sequence.

Edit Distance Given two words u and v over some alphabet, determine the least number of edits
(letter deletions, additions, and changes) that are needed to transform u into v.

18


