
Kolmogorov Complexity

Last Updated February 16th, 2024

1 Introduction

The following are some uses of the word complex.

Complex Situation one for which there may be a large number of ways in which the situation
could evolve, or in the number of possible past situations that resulted in the current one.
Examples include the current configuration of a game, such as chess or go, or a negotiation
between several parties.

Complex Problem one that requires a large amount of resources to solve. Examples include
combinatorial optimization problems, such as finding a large clique in a graph, or finding a
truth assignment that satisfies a number of logical constraints.

Complex System one that has a large number of interacting parts, each which behaves in accordance
with one or more rules. Examples include the human body, the internet, or a computer’s
architecture.

In this lecture we use the word complex to reflect the size of the smallest program that can generate
a given object, meaning that an object is complex to the degree that a large program is required
to generate the object. In this case we are defining the Kolmogorov complexity (abbreviated as
K-complexity) of the object x, denoted K(x). In this lecture we limit the term “object” to mean a
string of characters from some alphabet Σ. Unless otherwise noted, we assume that Σ = {0, 1}.

1

Example 1.1. Consider the string x = 01 . . . 01︸ ︷︷ ︸
n times

. Then the program

for(i=1; i <= n; i++}

print(01);

generates x. Thus K(x) ≤ ⌊log n⌋ + c for some constant c, since the number n can be represented
using ⌊log n⌋+ 1 bits and the rest of the program requires a constant number of bits.

On the other hand, consider a string x that is created by tossing a fair coin n times. As n increases,
it becomes more likely that the shortest program that can generate x is the one-line program

print(x);

in which case K(x) ≤ |x|+ c.

2

1.1 Conditional Kolmogorov complexity

Definition 1.2. Given x, y ∈ Σ∗, the conditional Kolmogorov complexity of x given y, written
as K(x|y), is defined as the size of the smallest program which, on input y, outputs x.

Definition 1.3. The length-conditional Kolmogorov complexity of x, written as K(x|n), is
defined as the size of the smallest program which, on input n = |x|, outputs x.

Notice that K(x) may be defined as a special case of conditional Kolmogorov complexity, namely
when y = λ, where λ is the empty string.

3

Example 1.4. Recall the string x = 01 . . . 01︸ ︷︷ ︸
n times

from Example 1.1. That example suggests that

K(x||x|) = c since n may now be computed from |x| which is as an input to the program.

The proof of the following proposition is left as an exercise.

Proposition 1.5. The following statements are true.

1. There is a constant c such that, for all x, K(x|x) ≤ c.

2. There is a constant c such that, for all x, y ∈ Σ∗, 0 ≤ K(x|y) ≤ K(x) + c.

3. There is a constant c such that, for all x ∈ Σ∗, K(x) ≤ |x|+ c.

4

2 The Robustness of Kolmogorov complexity

One attractive property of Kolmogorov complexity is that, up to an additive constant, it is invariant
with respect to the model of computation that is used to write the programs that generate strings,
assuming that the Church-Turing thesis hold for this model (e.g. the model has been shown to be
equivalent to the URM model in terms of the functions it computes). To see this, consider two
models of computation M1 and M2 and let Ki(x) denote the Kolmogorov complexity of x when
using a program from model Mi to generate x, i = 1, 2. Let P1 be the length-K1(x) M1-program
that generates x. Then by the Church-Turing thesis, there is an M2-program P2 which works as
follows.

Input M1-program Q.

Simulate the steps of Q.

If Q halts, then output the string that is output by Q.

By the Church-Turing thesis, the instructions of this program are independent of the input program
Q. Let c denote the size of P2. Now modify P2 to obtain a new M2-program P ′

2 which is the same
as P2 but with the encoding of input Q placed in a lookup table within P ′

2. Thus, we have

|P ′
2| = c+ |Q|.

In particular, if Q = P1, then

K2(x) ≤ |P ′
2| = c+ |P1| = |P1|+ c = K1(x) + c,

where c is independent of x. Therefore, we have the following theorem.

Theorem 2.1. Consider two models of computation M1 and M2 for which the Church-Turing thesis
holds for both models. Let Ki(x) denote the Kolmogorov complexity of x when using a program
from model Mi to generate x, i = 1, 2. Then there exist constants c and c′, both independent of x,
for which

c ≤ |K1(x)−K2(x)| ≤ c′.

5

3 A Universal Probability Distribution

In this section we develop a probability distribution for strings of length n, n ≥ 0, for which the
likelihood of selecting a length-n string x increases exponentially as K(x) decreases. In other words,
the distribution favors low-complexity strings. Then we show how sampling from this distribution
can create an interesting and somewhat surprising result regarding the worst-case versus average case
running times of an arbitrary program.

Proposition 3.1. If a string x having length n is randomly selected via the uniform distribution over
{0, 1}n (i.e. all strings of length n have the same probability of being selected), then the expected
value of K(x) satisfies

E[K(x)] ≥ (n− 2) +
(n+ 2)

2n
.

Proof. Given the set {0, 1}n, the following statements are true:
at most 1 member has K-complexity equal to 0,
at most 2 members have K-complexity equal to 1,
...
at most 2i members have K-complexity equal to i
...
at most 2n−1 members have K-complexity equal to n− 1. In other words, there are a total of

1 + 2 + · · ·+ 2n−1 = 2n − 1

members who have K-complexity less than n, meaning that at least one member has K-complexity
that is greater than or equal to n. Therefore,

E[K(x)] ≥
n−1∑
i=0

i · 2i−n +
n

2n
.

Now, if we let

S =
n−1∑
i=1

i · 2i−n,

then

2S =
n−1∑
i=1

i · 2i+1−n.

Then subtracting the former from the latter yields,

S = −21−n + (1 · 22−n − 2 · 22−n) + · · ·+ ((n− 2)2n−1−n − (n− 1)2n−1−n) + (n− 1)2n−n =

−21−n +−22−n + · · ·+−2n−1−n + (n− 1) = (n− 1)− 1

2n
[21 + · · ·+ 2n−1],

and with further simplication we have

E[K(x)] ≥ (n− 2) +
(n+ 2)

2n
.

And so the expected K-complexity of a randomly selected length-n string will be at least n− 2.

6

Now consider the following probability distribution for length-n strings. For each x ∈ {0, 1}n,

µn(x) = cn · 2−2K(x|n)

where cn is a constant. This distribution is often referred to as the universal distribution since

1. it is independent (up to a multiplicative constant) of the model of computation used to define
K(x|n) and

2. reflects the intrinsic amount of information contained in x.

Indeed, the average amount of information conveyed by x equals

H(µ) =
∑
|x|=n

1

cn22K(x|n) log
(
cn2

2K(x|n)) = ∑
|x|=n

1

cn22K(x|n) (log cn + 2K(x|n)) = log cn + 2E[K(x|n)]

which is asymptotically proportional to the average length-conditional K-complexity of a string (i.e.
minimum number of bits needed to represent x given n).

We leave the proof of the following proposition as an exercise.

Proposition 3.2. There exists a constant D for which cn ≥ D > 0 for all n ≥ 0, where cn is the
constant used to define the universal probability distribution µn(x) on strings of length n.

Hint: prove that ∑
|x|=n

2−2K(x|n)

has an upper bound that is independent of n.

7

We are now ready to prove the following remarkable result.

Theorem 3.3. Let A be an arbitrary algorithm that halts on all input strings and let n ≥ 1 be
given. Then

AveSteps(A, n) =
∑
|x|=n

µn(x)Steps(A, n) = Θ(WorstSteps(A, n)),

meaning that when samples are drawn using the universal distribution, the average-case number
of steps taken by A on a length-n input x differs by a multiplicative constant from the worst-case
number of steps taken by A on some length-n input, and the constant is independent of A and n.

Proof. Let A be an algorithm that halts on all inputs and consider the following program.

Input n.

Initialize Tmax,n = 0. //worst-case number of steps for an input of length n

xn = λ. //stores the word that causes A to execute the most steps

For each length-n word w,

Let T ′ equal the number of steps needed to simulate A on input w.

If T ′ > Tmax,n, then

Tmax,n = T ′.

xn = w.

Return xn.

Let c denote the length of the above program. Then K(xn|n) ≤ c and thus

µn(xn) = cn · 2−2K(xn|n) ≥ D · 2−2c,

where D is the constant guaranteed from Proposition 3.2. Now, letting α = D · 2−2c and Tmax,n

denote the number of steps required by A on input xn, we see that the average-case number of steps
required by A on an input of size n is at most Tmax,n (e.g. A requires the same number of steps for
every input), but at least (1− α) + αTmax,n (e.g. aside from the worst-case, A halts in a single step
for every other input). Thus we have

(1− α) + αTmax,n ≤ AveSteps(A, n) ≤ Tmax,n.

In other words,
AveSteps(A, n) = Θ(Tmax,n) = Θ(WorstSteps(A, n)),

and the proof is complete.

8

4 Lower-bound Proofs using Kolmogorov Complexity

An important area of research interest is in the use of Kolmogorov complexity for proving various
kinds of lower bounds. In this section we show how to use k-complexity to prove a lower bound on
the number of prime numbers that are less than or equal to an integer n. In number theory, the
exact value of this number is denoted by π(n).

4.1 Prime Number Theorem

Theorem 4.1. (Prime Number Theorem) We have

lim
n→∞

π(n)
n

logn

= 1.

Although proving the above theorem requires a significant amount of analysis and number theory,
we may use a relatively simple Kolmogorov-complexity argument to prove the following weaker (but
useful) result.

Theorem 4.2. For infintely many n,

π(n) ≥ n

log2 n
.

To prove the theorem, we’ll need an efficient method for encoding a pair of words ⟨w1, w2⟩. To
do so we use the concept of a self-terminating code, i.e. a method for encoding a word w that
enables one to determine where w terminates within the context of a larger string. Given binary
w = w1w2 · · ·wn, one such method is to encode w as

w = w10w20 · · ·wn1,

where the first 1 in an even position indicates the termination of w’s encoding, and the odd bits allow
one to recover w. One issue with this method is that the encoding length is twice the length of w
and with Kolmmogorov-complexity applications, having an efficient encoding is often crucial to its
success. For this reason we can instead encode w as

bin(|w|)w,

which only requires 2 log(|w|) + |w| bits. This encoding can be further improved by recursively
applying the method as follows.

9

Recursive Self-Terminating Encoding Algorithm

If |w| = 1, then return 01w.

If |w| = 2, then return 11w.

S = w.

count = 1. //counts the number of concatenated words in the encoding

L = |S|.

While L > 2

S = L · S. //Prepend S with the binary representation of L

count + +.

L = |L|.

Return |count| · S.

10

Example 4.3. Use the recursive self-terminating encoding described above to encode the binary
representations of 3, 39, 175, and 286.

11

Proof of Theorem 4.2. Letting pm, m ≥ 1, denote the m th prime number. It suffices to prove
that, for infinitely many m,

pm ≤ m log2m.

For suppose this is true. Then this would imply that

π(pm) = m ≥ pm

log2m
>

pm

log2 pm

since pm > m for all m ≥ 1.

Now let bin(n) denote the binary representation of a natural number n. Note that

|bin(n)| = ⌊log n⌋+ 1,

where we assume log 0 equals 0. Choose n to be sufficiently large to where

K(bin(n)) ≥ log n,

and let pm be the largest prime that divides n. Then we may reconstruct n from m and k = n/pm
by first effectively listing all prime numbers up to and including pm and multiplying pm with k.
Therefore, there is a program whose size is a constant c plus the length of some encoding of the pair
(m, k) and that can generate n and hence bin(n), where c is independent of n.

We use recursive self-terminating encoding to encode m, followed by encoding k = n/pm using at
most log n− log pm bits.

Moreover if we use the recursive self-terminating code described above we see that

log n ≤ K(bin(n)) ≤ log n− log pm + logm+ log(logm) + α log(log log(m)),

where α is indenpendent of n. Solving for pm we have

pm ≤ m logm log(logα(m)).

Of course, we could have extended our product out to any number of iterated log functions. This
suggests that we can improve the statement of the theorem and replace one of the logs in the
denominator with a product of iterated logarithms. We leave it as an exercise to state a stronger
version of Theorem 4.2 based on this proof.

12

