
Review of Big-O Notation

Last Updated: August 24th, 2024

1 Big-O Notation

Big-O notation is useful for making statements about the growth of a function f(n), n a natural
number, whose values may seem difficult or impossible to compute. The statements we care most
about are those that state upper and/or lower bounds on f ’s growth. Although we may not know the
exact bounds (since we may not know the exact values of f), we may be able to determine meaningful
ones in case we know the following two things:

1. the rule, call it g(n), for the fastest growing term (ignoring constants) of the bounding function,
and

2. that there exists a constant c > 0 such that, cg(n) provides a bound for f , for sufficiently large
n.

1



Example 1.1. Carol has programmed the Insertion Sort algorithm to run on her laptop. What
upper bound can she provide on the elapsed time t(n) that will occur on her laptop clock after
Insertion Sort has sorted an integer array of size n? She knows that the worst case occurs when
the input array is sorted in reverse order, and in this case a total of

n(n− 1)

2
=

n2

2
− n

2

comparisons and swaps must be performed in order to sort such an array. In this case, the rule for
the fastest growing term of the upper-bounding function is g(n) = n2. Also, she knows that each
comparison and swap requires at most two machine instructions, and that each machine instruction
requires at most 10−8 seconds to execute. Therefore, there is a c > 0 such that cg(n) is an upper
bound for the elapsed time.

2



Let f(n) and g(n) be functions from the set of nonnegative integers to the set of nonnegative real
numbers. Then

Big-O f(n) = O(g(n)) iff there exist constants c > 0 and k ≥ 1 such that f(n) ≤ cg(n) for every
n ≥ k.

Big-Ω f(n) = Ω(g(n)) iff there exist constants c > 0 and k ≥ 1 such that f(n) ≥ cg(n) for every
n ≥ k.

Big-Θ f(n) = Θ(g(n)) iff f(n) = O(g(n)) and f(n) = Ω(g(n)).

little-o f(n) = o(g(n)) iff lim
n→∞

f(n)
g(n)

= 0.

little-ω f(n) = ω(g(n)) iff lim
n→∞

f(n)
g(n)

= ∞.

3



Example 1.2. From the above discussion we have f(n) = 3.5n2 + 4n+ 36 = Θ(n2) since

3.5n2 ≤ f(n) = 3.5n2 + 4n+ 36 ≤ 3.5n2 + 4n2 + 36n2 = 43.5n2,

is true for all n ≥ 1. And so f(n) = Θ(n2), where c1 = 3.5 and c2 = 43.5 are the respective lower
and upper-bound constants.

4



Definition 1.3. The following table shows the most common kinds of rules for g(n) that are used
within big-O notation.

Function Type of Growth
1 constant growth
log n logarithmic growth

logk n, for some integer k ≥ 1 polylogarithmic growth
nk for some positve k < 1 sublinear growth
n linear growth
n log n log-linear growth

n logk n, for some integer k ≥ 1 polylog-linear growth

nj logk n, for some integers j, k ≥ 1 polylog-polynomial growth
n2 quadratic growth
n3 cubic growth
nk for some integer k ≥ 1 polynomial growth
2log

c n, for some c > 1 quasi-polynomial growth
ω(nk), for all integers k ≥ 1 superpolynomial growth
an for some a > 1 exponential growth

Example 1.4. Returning to Example 1.1, using big-O notation Carol can say that, when running
Insertion Sort on her laptop with an input of size n, the elapsed time equals O(n2) seconds. Also,
since Insertion Sort requires at least n comparisons for any input, she may also say that its running
time equals Ω(n) seconds.

5



Theorem 1.5. The following are all true statements.

1. 1 = o(log n)

2. log n = o(nϵ) for any ϵ > 0

3. logk n = o(nϵ) for any k > 0 and ϵ > 0

4. na = o(nb) if a < b, and na = Θ(nb) if a = b.

5. nk = o(2log
c n), for all k > 0 and c > 1.

6. 2log
c n = o(an) for all a, c > 1.

7. For nonnegative functions f(n) and g(n),

(f + g)(n) = Θ(max(f, g)(n)).

8. If f(n) = Θ(h(n)) and g(n) = Θ(k(n)), then (fg)(n) = Θ((hk)(n)).

9. If f(n) = o(g(n)) then f(n) = O(g(n)).

10. If f(n) = ω(g(n)) then f(n) = Ω(g(n)).

6



Example 1.6. For each of the following, state whether f(n) = O(g(n)), f(n) = Ω(g(n)), or both,
i.e. f(n) = Θ(g(n)).

1. f(n) = 3n+ 5, g(n) = 10n+ 6 log n.

2. f(n) =
√
n · log2 n, g(n) = 3

√
n log3 n.

3. f(n) = 10 log n, g(n) = 50 log n2.

4. f(n) = n2/ log n, g(n) = n log2 n.

5. f(n) = n2n, g(n) = 3n.

7



2 Advanced Results

Log Ratio Test. Suppose f and g are continuous functions over the interval [1,∞), and

lim
n→∞

log(
f(n)

g(n)
) = lim

n→∞
log(f(n))− log(g(n)) = L.

Then

1. If L = ∞ then

lim
n→∞

f(n)

g(n)
= ∞.

2. If L = −∞ then

lim
n→∞

f(n)

g(n)
= 0.

3. If L ∈ (−∞,∞) is a constant then

lim
n→∞

f(n)

g(n)
= 2L.

Integral Theorem. Let f(x) > 0 be an increasing or decreasing Riemann-integrable function over
the interval [1,∞). Then

n∑
i=1

f(i) = Θ(

∫ n

1

f(x)dx),

if f is decreasing. Moreover, the same is true if f is increasing, provided f(n) = O(
∫ n

1
f(x)dx).

Proof of Integral Theorem. We prove the case when f is decreasing. The case when f is increasing
is left as an exercise. The quantity

∫ n

1
f(x)dx represents the area under the curve of f(x) from 1 to

n. Moreover, for i = 1, . . . , n− 1, the rectangle Ri whose base is positioned from x = i to x = i+ 1,
and whose height is f(i+ 1) lies under the graph. Therefore,

n−1∑
i=1

Area(Ri) =
n∑

i=2

f(i) ≤
∫ n

1

f(x)dx.

Adding f(1) to both sides of the last inequality gives

n∑
i=1

f(i) ≤
∫ n

1

f(x)dx+ f(1).

Now, choosing C > 0 so that f(1) = C
∫ n

1
f(x)dx gives

n∑
i=1

f(i) ≤ (1 + C)

∫ n

1

f(x)dx,

8



which proves
n∑

i=1

f(i) = O(
∫ n

1
f(x)dx).

Now, for i = 1, . . . , n− 1, consider the rectangle R′
i whose base is positioned from x = i to x = i+1,

and whose height is f(i). This rectangle covers all the area under the graph of f from x = i to
x = i+ 1. Therefore,

n−1∑
i=1

Area(R′
i) =

n−1∑
i=1

f(i) ≥
∫ n

1

f(x)dx.

Now adding f(n) to the left side of the last inequality gives

n∑
i=1

f(i) ≥
∫ n

1

f(x)dx,

which proves
n∑

i=1

f(i) = Ω(
∫ n

1
f(x)dx).

Therefore,
n∑

i=1

f(i) = Θ(

∫ n

1

f(x)dx).

9



3 Big-O Notation within the Context of Algorithms

Given a problem L, and an algorithm A that solves L, big-O notation finds its use in the study of
algorithms as a means for describing bounds on the number of steps and the amount of memory
required by A as a function of the size parameters of L, i.e. the parameters used to indicate the
number of bits required to represent an instance of L.

Example 3.1. The following are examples of how big-O notation arises in the study of data structures
and algorithms.

1. Inserting an item into a balanced tree of size n requires O(log n) insertions.

2. It has been proven that, sorting n numbers using pairwise comparisons requires Ω(n log n)
comparisions.

3. The Fast Fourier Transform algorithm has a running time of Θ(m logm), where m is the degree
of the input polynomial.

4. Two b-bit integers may be recursively added/subtracted in O(b) steps and recursively multiplied/divided
in O(b2).

It is also common to see big-O notation used within an arithmetic expression, such as n2 + o(n), and

nO(1).

10


