
Divide and Conquer Algorithms

Last Updated: September 3rd, 2024

Introduction

A divide-and-conquer algorithm A follows the following general steps.

Base Case If the problem instance is O(1) in size, then use a brute-force procedure that requires
O(1) steps.

Divide Divide the problem instance into one or more subproblem instances, each having a size that
is smaller than the original instance.

Conquer Each subproblem instance is solved by making a recursive call to A.

Combine Combine the subproblem-instance solutions into a final solution to the original problem
instance.

1

The following are some problems that can be solved using a divide-and-conquer algorithm.

Binary Search locating an integer in a sorted array of integers

Quicksort and Mergesort sorting an array of integers

Order Statistics finding the k th least or greatest integer of an array

Convex Hulls finding the convex hull of a set of points in Rn

Minimum Distance Pair finding two points from a set of points in R2 that are closest

Matrix Operations matrix inversion, matrix multiplication, finding the largest submatrix of 1’s in
a Boolean matrix.

Fast Fourier Transform finding the product of two polynomials

Maximum Subsequence Sum finding the maximum sum of any subsequence in a sequence of
integers.

Minimum Positive Subsequence Sum finding the minimum positive sum of any subsequence in
a sequence of integers.

Multiplication of Binary Numbers finding the product of two binary numbers

From an analysis-of-algorithms perspective, the more interesting part of the analysis is often found
in establishing the algorithm’s running time. Usually this involves determinng the big-O growth
of a function T (n) that satisfies a divide-and-conquer recurrence. Hence, the techniques from the
previous lecture prove quite useful. Some algorithms require a degree of mathematical proof, but the
proofs usually seem more palpable than those required for, say, greedy algorithms. Quite often the
correctness of the algorithm seems clear from its description. As for implementation, most divide-
and-conquer algorithms act on arrays of numbers, matrices, or points in space, and do not require
any special data structures.

2

1 Hoare’s Quicksort

Before introducing Hoare’s Quicksort algorithm, recall that the median of an array a of n numbers
a[0], . . . , a[n − 1] is the (n + 1)/2 least element of a, if n is odd, and is equal to either the n/2 or
n/2 + 1 least element of a if n is even (even-length arrays have two medians).

Example 1.1. Determine the median of 7, 5, 7, 3, 4, 8, 2, 3, 7, 8, 2, and the medians of 4, 5, 10, 12, 6, 3.

Solution.

Quicksort is considered in practice to be the most efficient sorting algorithm for arrays of data
stored in local memory. Quicksort is similar to Mergesort in that the first (non base case) step is
to divide the input array a into two arrays aleft and aright. However, where as Mergesort simply

divides a into two equal halves, Quicksort performs the Partitioning Algorithm on a which is
described below.

3

1.1 Partitioning Algorithm

Calculate Pivot The pivot M is an element of a which is used to divide a into two subarrays aleft
and aright. Namely, all elements x ∈ aleft satisfy x ≤ M , while all elements x ∈ aright satisfy

x ≥ M . A common heuristic for computing M is called median-of-three, where M is chosen
as the median of the first, last, and middle elements of a; i.e. median(a[0], a[(n−1)/2], a[n−1]).

Swap Pivot Swap the pivot with the last member of a located at index n− 1 (M is now in a safe
place).

Initialize Markers Initialize a left marker to point to a[0]. Initialize a right marker to point to
a[n− 2]. Let i = 0 denote the current index location of the left marker, and j = n− 2 denote
the current index location of the right marker.

Examine Markers Execute one of the following cases.

� If i ≥ j, then swap a[i] with M = a[n−1]. In this case aleft consists of the first i elements
of a, while aright consists of the last n− i− 1 elements of a.Thus, a[i] = M is to the right

of aleft and to the left of aright.

� Else if a[i] ≥ M and a[j] ≤ M , then swap a[i] with a[j], increment i, and decrement j.

� Else increment i if a[i] < M and/or decrement j if a[j] > M

Repeat Re-examine markers until i ≥ j.

Once the Partitioning algorithm has partitiioned a into aleft and aright, then Quicksort is recursively

called on both these arrays, and the algorithm is complete.

Notice how Quicksort and Mergesort differ, in that Mergesort performs O(1) steps in partitioning a,
but Θ(n) steps to combine the sorted subarrays, while Quicksort performs Θ(n) steps to partition a,
and requires no work to combine the sorted arrays. Moreover, Quicksort has the advantage of sorting
“in place”, meaning that no additional memory is required outside of the input array. Indeed, the
Partitioning algorithm only requires swapping elements in the original array, and, the sorting of each
subarray only uses that part of a where the elements of the subarray are located. For example, if
aleft occupies locations 0 through 10 of a, then only those locations will be affected when Quicksort
is called on input aleft. It is this in-place property that gives Quicksort an advantage over Mergesort.

4

Example 1.2. Demonstrate the quicksort algorithm using the array 5, 8, 6, 2, 7, 1, 0, 9, 3, 4, 6.

Solution.

5

Running time of Quicksort. The running time (i.e. number of steps T (n) for an array size of n
comparables) of quicksort depends on how the pivot is chosen. Later in this lecture we demonstrate
how to find an exact median in O(n) steps. This algorithm could in theory be applied to finding the
Quicksort pivot. Using this approach quicksort has a running time of Θ(n log n), since T (n) satisfies
the recurrence

T (n) = 2T (n/2) + n.

However, in practice the pivot is chosen at random, or by using a heuristic such as median-of-three.
Although both options offer a worst case running time of O(n2), in practice they outperform the
approach that computes the median as the pivot. The worst case is O(n2) because, e.g., either
approach could result in a sequence of pivots for which aleft always has a length equal to one. In
this case the lengths of each aright subarray are respectively, n− 2, n− 4, n− 6, . . . down to either 1

or 2. And since the Partition algorithm must be performed on each of these arrays, it yields a total
running time of (assuming n is odd)

T (n) = O(n+ (n− 2) + (n− 4) + · · ·+ 1) = O(

(n+1)/2∑
i=1

(2i− 1)) = O(n2),

and so Quicksort has a worst-case quadratic running time.

6

2 Finding Order Statistics

The k th order statistic of an array a of n elements is the k th least element in the array, k =
0, . . . , n − 1. Moreover, finding the k th order statistic of a can be accomplished by sorting a and
returning the k th element in the sorted array. Using Mergesort, this will take Θ(n log n) steps. We
now describe an algorithm that is similar to Quicksort and reduces the running time for finding the
k th statistic down to O(n) steps.

For the moment assume that we have access to an oracle that can provide the median of an array
a at a computational cost of one step. Also, assume that, in addition to a and k, our algorithm has
two additional inputs, lower and upper, that respectively give lower and upper bounds on the index
of a where the k th statistic is located. Thus, our algorithm/function has the following signature
(here we assume an array of integers).

int find_statistic(int a[], int k, int lower, int upper)

For example, if a has a length of n, then the initial call would be

find_statistic(a,k,0,n-1)

7

Below is an implementation of find statistic

//Returns the kth statistic of a which is located at an index

//i for which i >= lower and i <= upper

int find_statistic(int a[], int k, int lower, int upper)

{

//Assume base case of 5 or fewer elements

if(upper-lower <= 4)

return find_statistic_base_case(a,k,lower,upper)

//The oracle returns the index of where a’s median is located

int index = oracle(a,lower,upper)

int M = a[index]

//partition_algorithm returns the index of the final pivot location

index = partition_algorithm(a,lower,upper,index)

if(k == index)//kth least element equals the pivot

return M

if(k < index)

return find_statistic(a,k,lower,index-1)

//Must have k > index

return find_statistic(a,k,index+1,upper)

}

8

Letting T (n) denote the running time of find statistic, we see that T (n) satisfies

T (n) ≤ T (n/2) + n.

Indeed, the oracle call counts for one step, the Partition algorithm counts for n steps (assuming
n = upper − lower + 1), and the recursive call (assuming k ̸= index) contributes another T (n/2)
steps. Thus, by Case 3 of the Master theorem, we see that T (n) = O(n).

Now all that remains is to replace the oracle function. As a first attempt, since the k = n/2 statistic
is a median of a, we could replace the function call

oracle(a,lower,upper)

with

find_statistic(a,n/2,lower,upper)

The problem here is that the input to this recursive call does not represent a smaller subproblem.
In other words, if n = upper − lower + 1 is the size of the original problem, then n is also the
size of the subproblem, since neither has the lower value been increased, nor has the upper value
been decreased. As a result, if n > 5, then the base case will never be attained, and the function’s
execution will result in an infinite loop.

Thus, when computing the median, we must reduce the problem size by finding the median of only
some of the elements of a, and yet hope that the answer still provides for a good enough partition.
To this end, the elements that will be used are determined as follows. Divide a into ⌈n/5⌉ groups of
five elements (the last group may contain fewer than five). Calculate the median of each group, and
place it in the array amedians. This array has a length of ⌈n/5⌉ elements. Now replace the function
call

oracle(a,lower,upper)

with

find statistic(amedians,
1

2
⌈n/5⌉, 0, ⌈n/5⌉ − 1).

In other words, the new pivot is equal to the median of the medians of each group of five.

9

Example 2.1. Demonstrate how the pivot is selected for the (median-of-five) find statistic

algorithm using the array

5, 18, 36, 42, 27, 11, 70, 49, 33, 84, 66, 37, 83, 15, 5, 42, 54, 97, 68, 43, 92, 77.

10

Theorem 1. The find statistic algorithm has a worst-case running time of T (n) = O(n).

Proof of Theorem 1. T (n) satisfies the recurrence

T (n) ≤ T (n/5) + T (bn) + n,

where T (n/5) is the cost of finding the median of amedians, n is the cost of the Partitioning algorithm,
and T (bn) is the cost of the final recursive call (if necessary). Here, b is a fraction for which ⌊bn⌋
represents the worst-case length of either aleft or aright. Using the oracle, we had b = 1/2, since the

oracle returned the exact median of a which was used as the partitioning pivot. But now the pivot
is determined by the median of amedians.

Claim. The median M of amedians is greater than or equal to (respectively, less than or equal to)
at least

3(⌊1
2
⌈n
5
⌉⌋ − 2) ≥ 3(

1

2
· n
5
− 3) =

3n

10
− 9 ≥ n/4

elements of a, assuming n ≥ 180.

Proof of Claim. Since M is the median of amedians it must be greater than or equal to at least
L = ⌊1

2
⌈n
5
⌉⌋ elements of amedians. Moreover, we subtract 2 from L to account for the median M

itself, and also the median of the last group, which might not have five elements. Thus, L − 2 is
the number of elements of amedians that are distinct from M , and come from a group that has five
elements, and which are less than or equal to M . But, since each of these elements is the median of
its group, there must be two additional elements in its group that are also less than or equal to M .
Hence, there are 3 elements in the group that are less than or equal to M , giving a total of

3(L− 2) = 3(⌊1
2
⌈n
5
⌉⌋ − 2)

elements of a that are less than or equal to M .

Furthermore, using the inequalities, ⌊x⌋ ≥ x−1 and ⌈x⌉ ≥ x, we arrive at 3(L−2) ≥ 3n
10
−9. Finally,

basic algebra shows that the inequality

3n

10
− 9 ≥ n/4

is true provided n ≥ 180. A symmetrical argument may be given for establishing that M is also less
than or equal to at least n/4 elements of a.

To finish the proof of Theorem 1, since there are at least n/4 elements to the left and right of M , we
know that both aleft and aright cannot have lengths that exceed n − n/4 = 3n/4. Thus, b = 3/4,

and we have
T (n) ≤ T (n/5) + T (3n/4) + n.

Finally, by Exercise 16 from the Recurrence Relations lecture with a = 1/5 and b = 3/4, we have
a+ b = 1/5 + 3/4 = 19/20 < 1 which implies that T (n) = O(n).

11

3 Strassen’s Algorithm for Matrix Multiplication

Given two n × n matrices A and B, the standard way to compute their product C = AB is to
compute entry cij of C by taking the dot product of row i of A with column j of B. Furthermore,
since a dot product requires Θ(n) operations and there are n2 entries to compute, we see that the
standard approach requires Θ(n3) steps.

One interesting property of matrices is that their entries do not necessarily have to be real numbers.
They can be any kind of element for which addition, subtraction, and multiplication have been
defined. Therefore, the entries of a matrix can be matrices! For example, below is a 2 × 2 matrix
whose entries are themselves 2× 2 matrices.


(

2 −1
4 −2

) (
−1 3
5 0

)
(

4 1
−3 0

) (
2 6
−2 3

)


Theorem 3.1. Let A and B be two square n× n matrices, where n is even. Let A11, A12, A21, and
A22 represent the four n

2
× n

2
submatrices of A that correspond to its four quadrants. For example,

A11 consists of rows 1 through n/2 of A whose entries are restricted to columns 1 through n/2.
Similarly, A12 consists of rows 1 through n/2 of A whose entries are restricted to columns n/2 + 1
through n. Finally, A21 and A22 represent the bottom half of A. Thus, A can be written as

A =

(
A11 A12

A21 A22

)
Submatrices B11, B12, B21, and B22 are defined similarly. Finally, let Â and B̂ be the 2× 2 matrices
whose entries are the four quadrants of A and B respectively. Then the entries of Ĉ = ÂB̂ are the
four quadrants of C = AB.

12

Proof. Consider the (i, j) entry of C = AB. For simplicty of notation, assume that (i, j) lies in the
upper left quadrant of C. Then we have

cij =
n∑

k=1

aikbkj.

We must show that cij is equal to entry (i, j) of ĉ11, where ĉ11 is the
n
2
× n

2
matrix that is entry (1, 1)

of Ĉ. To simplify the indexing notation, let

Â =

(
p q
r s

)
and B̂ =

(
t u
v w

)
be the respective quadrant matrices of A and B. Then matrices p through w are all n

2
× n

2
matrices.

Now,
ĉ11 = A11B11 + A12B21 = pt+ qv

is the sum of two matrix products. Thus, the (i, j) entry of ĉ11 is equal to

n/2∑
k=1

piktkj +

n/2∑
k=1

qikvkj =

n/2∑
k=1

aikbkj +

n/2∑
k=1

ai(k+n/2)b(k+n/2)j =

n/2∑
k=1

aikbkj +
n∑

k=n/2

aikbkj =

n∑
k=1

aikbkj = cij,

and the proof is complete.

13

Example 3.2. Given the matrices

A =


−2 −4 1 0
4 −2 −3 1
1 0 −4 −2
−3 2 1 −4

 B =


−1 4 −1 2
3 −3 4 −1
−1 2 −2 −1
−2 −2 −1 4


Verify that quadrant C11 of C = AB is equal to entry (1, 1) of Ĉ = ÂB̂.

Solution. We have

C = AB =


−11 6 −16 −1
−9 14 −7 17
7 0 9 −2
16 −8 13 −25

 .

Moreover,

A11B11+A12B21 =

(
−2 −4
4 −2

)(
−1 4
3 −3

)
+

(
1 0
−3 1

)(
−1 2
−2 −2

)
=

(
−10 4
−10 22

)
+

(
−1 2
1 −8

)
=

(
−11 6
−9 14

)
= C11.

We leave it as an exercise to verify the other three equations:

A11B12 + A12B22 = C12,

A21B11 + A22B21 = C21,

and
A21B12 + A22B22 = C22.

14

Theorem 2 leads to the following divide-and-conquer algorithm for multiplying two n × n matrices
A and B, where n is a power of two. Let

A =

(
a b
c d

)
and B =

(
e f
g h

)
be two n × n matrices, where n is a power of two, and, e.g. a represents the n/2 × n/2 upper left
quadrant of A, b the n/2 × n/2 upper right quadrant of A, etc.. The goal is to compute C = AB,
where

C =

(
r s
t u

)
.

The algorithm divides A and B into their four quadrants and proceeds to make 8 recursive calls to
obtain the n/2× n/2 products ae, bg, af , bh, ce, dg, cf , and dh. Finally, these products are added
to obtain

r = ae+ bg,

s = af + bh,

t = ce+ dg,

u = cf + dh.

Letting T (n) denote the running time of the algorithm, then T (n) satisfies

T (n) = 8T (n/2) + n2,

where the first term is due to the 8 recursive calls on matrices whose dimensions are n/2, and the
second term n2 represents the big-O number of steps needed to divide A and B into their quadrants,
and to add the eight products that form the quadrants of C. Therefore, by Case 1 of the Master
Theorem, T (n) = Θ(n3), and the algorithm’s running time is equivalent to the running time when
using the standard matrix-multiplication procedure.

15

3.1 Strassen’s improvement

Strassen’s insight was to first take linear combinations of the quadrants of A and B, and then multiply
these combinations. By doing this, he demonstrated that only 7 products are needed. These products
are then added to obtain the quadrants of C. Moreover, since computing a linear combination of A
and B quadrants takes Θ(n2) steps (since we are just adding and subtracting a constant number of
n/2× n/2 matrices), the recurrence produced by Strassen is

T (n) = 7T (n/2) + n2,

which improves the runnng time to nlog 7, where log 7 ≈ 2.8.

16

Strassen’s Seven Matrix Products

1. A1 = a, B1 = f − h, P1 = A1B1 = a(f − h) = af − ah

2. A2 = a+ b, B2 = h, P2 = A2B2 = (a+ b)h = ah+ bh

3. A3 = c+ d, B3 = e, P3 = A3B3 = (c+ d)e = ce+ de

4. A4 = d, B4 = g − e, P4 = A4B4 = d(g − e) = dg − de

5. A5 = a+ d, B5 = e+ h, P5 = A5B5 = (a+ d)(e+ h) = ae+ ah+ de+ dh

6. A6 = b− d, B6 = g + h, P6 = A6B6 = (b− d)(g + h) = bg + bh− dg − dh

7. A7 = a− c, B7 = e+ f , P7 = A7B7 = (a− c)(e+ f) = ae− ce− cf + af

Example 3.3. Write r, s, t, u as linear combinations of P1, . . . , P7.

Solution (verify!).
r = ae+ bg = P5 + P6 − P2 + P4

s = af + bh = P1 + P2

t = ce+ dg = P3 + P4

u = cf + dh = −P7 + P5 − P3 + P1

17

Exercises

1. Perform the partitioning step of Quicksort on the array 9, 6, 1, 9, 11, 10, 6, 9, 12, 2, 7, where the
pivot is chosen using the median-of-three heuristic.

2. Provide a permutation of the numbers 1-9 so that, when sorted by Quicksort using median-
of-three heuristic, the aleft subarray always has one element in rounds 1,2, and 3. Note: in
general, when using the median-of-three heuristic, Quicksort is susceptible to Θ(n2) worst case
performance.

3. Given n distinct integers, prove that the greatest element of a can be found using n − 1
comparisons, and that one can do no better than n− 1.

4. Given n distinct integers, show that the second greatest element can be found with n+⌈log n⌉−2
comparisons in the worst case.

5. Given n distinct integers, prove the lower bound of ⌈3n/2⌉ − 2 comparisons in the worst case
to determine both the least and greatest element.

6. If
a = 2, 4, 1, 3, 8, 9, 3, 5, 7, 6, 5, 8, 5

serves as input to the Median-of-Five Find Statistic algorithm, then what pivot is used for the
algorithm’s partitioning step at the root level of recursion?

7. For the Median-of-Five Find Statistic algorithm, does the algorithm still run in linear time if
groups of seven are used? Explain and show work. How about groups of 3?

8. For the Median-of-Five Find Statistic algorithm, show that if n ≥ 180, then at least n/4
elements of a are greater than (and respectively less than) or equal to the pivot (i.e. the
median of the medians of groups of 5).

9. Explain how the Median-of-Five Find Statistic Algorithm could be used to modify Hoare’s
Quicksort so that it requires O(n log n) steps in the worst-case.

10. Suppose you have a “black box” worst-case linear-time algorithm that can find the median of
an array of integers. Using this algorithm, describe a simple linear-time algorithm that solves
the Find k th Statistic problem. Prove that your algorithm runs in linear time.

11. The q th quantiles of an n-element array are the q − 1 order statistics that divide the sorted
array into q equal-sized subarrays (to within 1). In other words, the q th quantiles of an
n-element array are the q − 1 k th least elements of a, for

k = ⌊n/q⌋, ⌊2n/q⌋, . . . , ⌊(q − 1)n/q⌋.

Provide the 3rd quantiles for the array of integers

5, 8, 16, 2, 7, 11, 0, 9, 3, 4, 6, 7, 3, 15, 5, 12, 4, 7.

12. Provide an O(n log q)-time algorithm that finds the q th quantiles of an array. Hint: modify the
Find-Statistic algorithm so that multiple statistics (i.e. the q th quantiles) can be simultaneously
found. At what level of recursion will the algorithm reduce to the original algorithm for just
one statistic? Notice that from this level down the algorithm will then run in linear time in the
size of the array at that level.

18

13. For the matrices A and B in Example 3.2, compute the remaining quadrants C12, C21, and C22

of C = AB and verify that they are the entries of matrix Ĉ = ÂB̂, where, e.g. Â is the matrix
whose entries are the quadrants of A.

14. Prove the other four cases of Theorem 2, i.e. the cases where entry (i, j) of C lies in the upper
right, lower left, and lower right quadrant.

15. Use Strassen’s algorithm to compute the matrix product(
1 3
7 5

)(
6 8
4 2

)
16. Suppose you want to apply Strassen’s algorithm to square matrices whose number of rows are

not powers of 2. To do this you, add more columns and rows of zeros to each matrix until the
number of rows (and columns) of each matrix reaches a power of 2. The perform the algorithm.
If m is the original dimension, and n is the dimension after adding more rows and columns, is
the running time still Θ(mlog 7)? Explain and show work.

17. What is the largest k such that you can multiply 3× 3 matrices using k multiplications, then
you can multiply matrices in time o(nlog 7)? Explain and show work.

18. Professor Jones has discovered a way to multiply 68×68 matrices using 132,464 multiplications,
and a way to 70× 70 matrices using 143,640 multiplications. Which method yields the better
asymptotic running time? How do these methods compare with Strassen’s algorithm?

19. Using Strassen’s algorithm, describe an efficient way to multiply a kn×n matrix with an n×kn
matrix. You may assume n is a power of 2.

20. Show how to multiply the complex numbers a+ bi and c+ di using only three multiplications
of real numbers. The algorithm should take a, b, c, and d as input, and produce the real
component ac− bd and imaginary component ad+ bc. Note that the straightforward approach
requires four multiplications. We seek a more clever approach.

21. Consider the following algorithm called multiply for multiplying two n-bit binary numbers x
and y. Let xL and xR be the leftmost ⌈n/2⌉ and rightmost ⌊n/2⌋ bits of x respectively. Define
yL and yR similarly. Let P1 be the result of calling multiply on inputs xL and yL, P2 be the
result of calling multiply on inputs xR and yR, and P3 the result of calling multiply on inputs
xL+xR and yL+yR. Then return the value P1×22⌊

n
2
⌋+(P3−P1−P2)×2⌊n/2⌋+P2. Provide the

divide-and-conquer recurrence for this algorithm’s running time T (n), and use it to determine
the running time.

22. For the two binary integers x = 1101111 and y = 1011101, determine the top-level values of
P1, P2, and P3, and verify that xy = P1 × 22⌊

n
2
⌋ + (P3 − P1 − P2)× 2⌊n/2⌋ + P2.

23. Verify that the algorithm always works by proving in general that xy = P1 × 2n + (P3 − P1 −
P2) × 2n/2 + P2 for arbitrary x and y. Hint: you may assume that x and y both have even
lengths as binary words.

24. Given an array a[] of integers, a subsequence of the array is a sequence of the form a[i], a[i +
1], a[i + 2], . . . , a[j], where i ≤ j. Moreover, the sum of the subsequence is defined as a[i] +
a[i+1]+ a[i+2]+ · · ·+ a[j]. Describe in words a divide-and-conquer algorithm for finding the

19

maximum sum that is associated with any subsequence of the array. Make sure your description
has enough detail so that someone could read it and understand how to program it.

25. Provide a divide-and-conquer recurrence relation that describes the running time T (n) of the
algorithm from the previous problem, and use the Master Theorem to provide an asympotic
solution for the running time.

26. Repeat the previous two problems, but now your algorithm should find the minimum positive
subsequence sum. In other words, of all subsequences whose sum adds to a positive number,
you want to determine the minimum of such sums.

27. Describe an O(n)-time algorithm that, given an array of n distinct numbers, and a positive
integer k ≤ n, determines the k elements in the array that are closest to the median of the
array. Hint: first find the median and form a new array that is capable of giving the answer.

28. Let a and b be two odd-lengthed n-element arrays already in sorted order. Give an O(log n)-
time algorithm to find the two medians of all the 2n elements in arrays a and b combined,
denoted a ∪ b.

20

Exercise Hints and Answers

1. Pivot = 9. aleft = 7, 6, 1, 2, 9, 6, aright = 11, 12, 9, 10

2. 173924685 is one possible permutation. Verify!

3. Let S0 denote the set of n integers. While there is more than one integer in Si, i ≥ 0, pair up the
integers in Si. If |Si| is odd, then add the last (unpaired) integer to Si+1. Perform a comparison
on each pair and add the greater integer to Si+1. Thus, there is a one-to-one correspondence
between integers that are left out of the next set Si+1 and comparisons performed (during
iteration i). Moreover, since there will be some j for which |Sj| = 1, Sj will contain the
greatest integer after a total of n− 1 comparisions.

4. Since the second greatest integer n2 does not appear in the final set Sj (see previous problem),
there must exist an iteration i for which n2 is compared with n1, the greatest integer. This is
true since n1 is the only integer that could prevent n2 from advancing. Thus, n2 can be found
by examining the integers that were compared with n1. Since n1 is compared with at most
⌈log n⌉ integers (why?), we can use the result of the previous problem to conclude that n2 can
be found by first determining n1 using n− 1 comparisons, and then using the same algorithm
on the elements that were compared with n1 to find n2. This requires an additional ⌈log n⌉− 1
comparisions. This gives a total of n+ ⌈log n⌉ − 2 comparisons.

5. Pair up the integers and compare each pair. Place the greater integers in set G, and the lesser
integers in set L. Now find the greatest element of G, and the least element of L.

6. The medians of groups G1, G2, and G3 are respectively, 3, 6, and 5. Therefore, the pivot is
median(3, 6, 5) = 5.

7. True for groups of 7, since new recurrence is T (n) ≤ T (⌈n/7⌉) + T (5n/7+ 12)+O(n). Use the
result that T (n) = T (an) + T (bn) + O(n), with a + b < 1, implies T (n) = O(n). Not true for
groups of 3, since, in the worst-case, the new recurrence is T (n) = T (⌈n/3⌉)+T (2n/3+6)+O(n)
which yields log-linear growth in the worst case. This can be verified using the substitution
method.

8.
3n/10− 9 ≥ n/4 ⇔ (6n− 5n)/20 ≥ 9 ⇔ n ≥ 180.

9. Use the Find-Statistic algorithm to determine the median M of the array, and use M as the
pivot in the partitioning step. This ensures a Quicksort running time of T (n) = 2T (n/2)+O(n),
since both subarrays are now guaranteed to have size n/2.

10. Similar to the previous problem, the black-box algorithm can be used to find the median M
of the array, and use M as the pivot in the partitioning step. This ensures a running time of
T (n) = T (n/2) + O(n).

11. The 3rd quantiles occur at index values ⌊n/3⌋ and ⌊2n/3⌋ (of the sorted array). This corresponds
with k = 6 and k = 12. Associated with these indices are elements 5 and 8, respectively.

12. If we modify Find-Statistic to simultaneously find each of the quantiles (there are q − 1 of
them), then, since the quantiles are spread across the entire array, then, after the partitioning

21

step, we will need to make recursive calls on both aleft and aright (we may assume that we

are using the exact median for the pivot during the partition step since the median can be
found in linear time). The recurrence is thus T (n) = 2T (n/2) + O(n). Note however, that
once the array sizes become sufficiently small during the recursion, there can be at most one
quantile inside each array. Indeed, the quantiles are a guaranteed distance of n/q apart from
each other. Moreover, the array sizes are being halved at each level of recursion, it will take
a depth of log q (verify!) before the array sizes are sufficiently small to only possess at most
one quantile. When this happens, the normal Find-Statistic algorithm may be used, since now
only a single k value is being sought. The running time is thus O(n log q) for computational
steps applied down to depth log q of the recursion tree. The remainder of the tree consists of q
problems of size n/q, and each of these problems can be solved in linear time using the original
Find-Statistic algorithm. This yields an additional qO(n/q) = O(n) running time. Therefore
the total running time is O(n log q).

13. We have
C12 = ĉ12 = â11b̂12 + â12b̂22 = A11B12 + A12B22 =(

−2 −4
4 −2

)(
−1 2
4 −1

)
+

(
1 0
−3 1

)(
−2 −1
−1 4

)
=(

−14 0
−12 10

)
+

(
−2 −1
5 7

)
=

(
−16 −1
−7 17

)
,

C21 = ĉ21 = â21b̂11 + â22b̂21 = A21B11 + A22B21 =(
1 0
−3 2

)(
−1 4
3 −3

)
+

(
−4 −2
1 −4

)(
−1 2
−2 −2

)
=(

−1 4
9 −18

)
+

(
8 −4
16 10

)
=

(
7 0
16 −8

)
,

and

C22 = ĉ22 = â21b̂12 + â22b̂22 = A21B12 + A22B22 =(
1 0
−3 2

)(
−1 2
4 −1

)
+

(
−4 −2
1 −4

)(
−2 −1
−1 4

)
=(

−1 2
11 −8

)
+

(
10 −4
2 −17

)
=

(
9 −2
13 −25

)
.

Verify by direct multiplication of A with B that these are the quadrants of C = AB.

14. Consider the case where entry (i, j) lies in the upper right qudrant of C. Then we have

cij =
n∑

k=1

aikbkj.

We must show that cij is equal to entry (i, j − n/2) of ĉ12, where ĉ12 is the n
2
× n

2
matrix that

is entry (1, 2) of Ĉ. To simplify the indexing notation, let

Â =

(
p q
r s

)
and B̂ =

(
t u
v w

)
22

be the respective quadrant matrices of A and B. Then matrices p through w are all n
2
× n

2

matrices. Now,
ĉ12 = A11B12 + A12B22 = pu+ qw

is the sum of two matrix products. Thus, the (i, j − n/2) entry of ĉ12 is equal to

n/2∑
k=1

pikuk(j−n/2) +

n/2∑
k=1

qikwk(j−n/2) =

n/2∑
k=1

aikbkj +

n/2∑
k=1

ai(k+n/2)b(k+n/2)j =

n/2∑
k=1

aikbkj +
n∑

k=n/2+1

aikbkj =

n∑
k=1

aikbkj = cij,

and the proof is complete. The proof is similar for the cases when (i, j) is in either the lower
left or lower right quadrant.

15. (
18 14
62 66

)
16. Padding the matrices with rows and columns of zeros to get a power of 2 number of rows

will at most double the number of rows/columns of the matrix. But if T (n) = cnk, then
T (2n) = c(2n)k = 2kcnk, and so the running time is still Θ(nk).

17. We need the largest k for which T (n) = kT (n/3) + O(n2) yields a better running time than
T (n) = 7T (n/2) + O(n2). Thus we need log3 k < log 7, or k = ⌊3log 7⌋.

18. log68(132, 464) ≈ 2.795. Also, log70(143, 640) ≈ 2.795, so they are approximately the same in
terms of running time. They are slightly better than Strassen’s algorithm, since log 7 ≈ 2.8.

19. We can think of the first matrix as a “column” of n × n matrices A1 · · ·Ak, where the second
matrix as a “row” of n × n matrices B1 · · ·Bk. The product thus consists of k2 n × n blocks
Cij, where Cij = AiBj. Thus, the product can be found via k2 matrix multiplications, each of
size n× n. Using Strassen’s algorithm yields a running time of Θ(k2nlog 7).

20. ad,bc,(a+ b)(c− d)

21. T (n) = 3T (n/2) + O(n) yields T (n) = Θ(nlog 3).

22. x = 111, y = 93, xL = 13, xR = 7, yL = 11, and yR = 5. P1 = 143, P2 = 35, P3 = 320.
(64)(143) + (8)(320− 143− 35) + 35 = 10323 = (111)(93).

23. We have x = (2n/2xL + xR) and y = (2n/2yL + yR). Multiply these together to derive the right
side of the equation.

23

24. Divide the array a into equal-length subarrays aL and aR. Let MSSL denote the MSS of aL
(found by making a recursive call), MSSR denote the MSS of aR. Then calculate MSSmiddle in
linear time by adding the MSS of aL that ends with the last element of aL to the MSS of aR that
begins with the first element of aR. Return the maximum of MSSL, MSSR, and MSSmiddle.

25. The running time recurrence satisfies T (n) = 2T (n/2) + O(n).

26. Same algorithm as for MSS of previous problem, but now it is not so easy to compute MPSSmiddle,
since it may be realized by any subsequence sum of aL that ends with the last element of aL
being added to any other subsequence sum of aR that begins with the first element of aR. For
both aL and bL there are n/2 such subsequence sums. Sort those of aL in ascending order into
a list SL. Similarly sort those of aR in descending order into a list SR. Let i be an index marker
of SL, and j an index marker for SR. Set smin = ∞. If s = SL(i) + SR(j) ≤ 0, then increment
i. Else if s < smin, then set smin = s, and increment j, Otherwise, we have s > smin, in which
case we increment j. When either the elements of SL or SR have been exhausted, then set
MPSSmiddle = smin. Running time T (n) satisfies T (n) = 2T (n/2) + an log n. Hence, by using

the Master Equation and the substitution method, we can prove that T (n) = Θ(n log2 n).

27. Use Find-Statistic to find the median m of a in linear time. Then create the array b, where
b[i] = |a[i]−m|. Then in linear time find the k th least element e of b (along with the subarray
of elements of b that are all less than or equal to e). Translate these elements back to elements
of a.

28. For the base case, if n = 1, then a ∪ b has two elements, each of which is a median. Now
suppose n > 1 is odd. Let ma be the median of a, and mb the median of b (both can be found
in constant time since both arrays are sorted). If ma = mb, then ma = mb are the two desired
medians. of a ∪ b. Otherwise, assume WLOG (without loss of generality) that ma < mb. If m
is a median of a∪ b, then we must have ma ≤ m ≤ mb. Otherwise, suppose, e.g., that m < ma.
Then there would be more elements of a ∪ b that are to the right of m (why ?). Similarly, it
is not possible for m > mb. Hence, the elements aL of a to the left of ma must be less than or
equal to m. Similarly, the elements bR of b to the right of mb must be greater than or equal
to m. Thus, if we remove aL from a and bR from b, we obtain two odd-lenthed arrays that
are now half the size, yet that still have the same medians as the previous arrays. Repeat the
process until the base case is reached. Running time is O(log n), since it satisfies the recurrence
T (n) = T (n/2) + 1.

24

