
Dynamic Programming Algorithms

Last Updated: 4/24/2024

Introduction

In our study of divide-and-conquer algorithms, we noticed that a problem seemed conducive to a
divide-and-conquer approach provided

1. it could be divided into one or more subproblems of smaller size that could be recursively solved,
and

2. solutions to the subproblems could be combined to form the solution to the original problem
within a reasonable (i.e. bounded by a polynomial) number of steps.

Another key property that allows divide-and-conquer algorithms to succeed is that each subproblem
occurs at most once in the computation tree induced by the recursion. For example, in quicksort
once a portion of the original array has been sorted there is no need to sort it again.

However, the top down recursive approach is oftentimes not appropriate for some problems because a
top down approach to solving them may cause some sub-problems to re-solved an exorbitant number
of times in the computation tree. Consider the following example.

1

Example 1. The Fibonacci sequence f0, f1, . . . is recursively defined as follows:

� base case. f0 = 0 and f1 = 1

� recursive case. for n ≥ 2, fn = fn−1 + fn−2.

Show that the following recursive algorithm for computing the n th Fibonacci number has exponential
complexity with respect to n.

int fib(int n)

{

if(n == 0)

return 0;

if(n==1)

return 1;

return fib(n-1) + fib(n-2);

}

2

Example 1 Continued.

3

The above recursive algorithm has a simple remedy that characterizes a dynamic programming
algorithm. On input n, rather than make blind recursive calls, we instead store f0 and f1, and
use these values to compute f2. After storing f2, we then compute f3 using f1 and f2. This process
continues until fn has been computed. We call this approach a bottom-up approach, since the focus
is on first computing the solutions to smaller subproblems, and then using those solutions to compute
the solutions for larger subproblems, and eventually solving the original problem.

A dynamic-programming algorithm is similar to a divide-and-conquer algorithm in that it
attempts to solve a problem instance by relating it to the solutions of sub-problem instances via a
recurrence equation. For such an equation a subproblem-instance solution may need to be referenced
several times. For this reason, each subproblem-instance solution is stored in a table for future
reference.

The following are some problems that may be solved using a dynamic-programming algorithm.

0-1 Knapsack Given items x1, . . . , xn, where item xi has weight wi and profit pi (if it gets placed
in the knapsack), determine the subset of items to place in the knapsack in order to maximize
profit, assuming that the sack has weight capacity M .

Longest Common Subsequence Given an alphabet Σ, and two words X and Y whose letters
belong to Σ, find the longest word Z which is a (non-contiguous) subsequence of both X and
Y .

Optimal Binary Search Tree Given a set of keys k1, . . . , kn and weights w1, . . . wn, where wi is
proportional to how often ki is accessed, design a binary search tree so that the weighted cost
of accessing a key is minimized.

Matrix Chain Multiplication Given a sequence of matrices that must be multiplied, parenthesize
the product so that the total multiplication complexity is minimized.

All-Pairs Minimum Distance Given a directed graph G = (V,E), find the distance between all
pairs of vertices in V .

Polygon Triangulation Given a convex polygon P =< v0, v1, . . . , vn−1 > and a weight function
defined on both the chords and sides of P , find a triangulation of P that minimizes the sum of
the weights of which forms the triangulation.

Bitonic Traveling Salesperson given n cities c1, . . . , cn, where ci has grid coordinates (xi, yi), and
a cost matrix C, where entry Cij denotes the cost of traveling from city i to city j, determine a
left-to-right followed by right-to-left Hamilton-cycle tour of all the cities which minimizes the
total traveling cost. In other words, the tour starts at the leftmost city, proceeds from left to
right visiting a subset of the cities (including the rightmost city), and then concludes from right
to left visiting the remaining cities.

Viterbi’s algorithm for context-dependent classification Given a set of observations x⃗1, . . . , x⃗n

find the sequence of classes ω1, . . . , ωn that are most likely to have produced the observation
sequence.

4

Edit Distance Given two words u and v over some alphabet, determine the least number of edits
(letter deletions, additions, and changes) that are needed to transform u into v.

0-1 Knapsack

0-1 Knapsack: given items x1, . . . , xn, where item xi has weight wi and profit pi (if its placed in
the knapsack), determine the subset of items to place in the knapsack in order to maximize profit,
assuming that the sack has capacity M .

A recurrence for 0-1 Knapsack can be derived by making the following observations about an optimal
solution.

Case 1 The optimal solution includes xn. Then the rest of the solution is the optimal solution
for the knapsack problem in which items x1, . . . , xn−1 are given (same weights and profits as
before), and for which the sack capacity is now M − wn.

Case 2 The optimal solution does not include xn. Then the solution is the optimal solution for the
knapsack problem in which items x1, . . . , xn−1 are given (same weights and profits as before),
and for which the sack capacity is M .

We can generalize this observation by considering the sub-problem where items x1, . . . , xi are to be
placed into a knapsack with capacity c. Letting P (i, c) denote the maximum profit for this problem,
then the above cases lead to the recurrence

P (i, c) =


0 if i = 0 or c ≤ 0
max(P (i− 1, c), P (i− 1, c− wi) + pi) if wi ≤ c
P (i− 1, c) otherwise

Of course, we ultimately desire to compute P (n,M) which may be found by be computing each entry
of the matrix P (i, c), for 0 ≤ i ≤ n, and 0 ≤ c ≤ M . Thus, the algorithm has a running time of
Θ(nM), which is exponential in the two input-size paramters n and logM (why logM and not M?).

5

Example 2. Solve the following 0-1 knapsack problem using a dynamic-programming approach.
Assume a knapsack capacity of M = 10.

item weight profit
1 3 40
2 5 60
3 5 50
4 1 30
5 4 50

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

Edit Distance Between Two Words

Given two words u and v over some alphabet, The edit distance, also known as Levenshtein
distance, d(u, v) is defined as the the minimum number of edit operations needed to convert one
word to another. These edits include adding a character, deleting a character, and changing a
character. In this lecture, each edit will be assinged a cost of 1. However, in practice, it may make
more sense to assign different costs to different kinds of edits, where the more likely edits (e.g.,
replacing an ‘e’ with an ‘r’, as often occurs in typing errors) are given lower costs

Example 3. Compute the edit distance between the words u=sample and v=dampen.

7

Theorem 1. Let u and v be words, with, |u| = m, and |v| = n. For 0 ≤ i ≤ m and 0 ≤ j ≤ n,
define d(i, j) as the edit distance between u[1 : i] and v[1 : j], where, e.g., u[1 : i] is the prefix of word
u having length i. Then

d(i, j) =


j if i = 0
i if j = 0
min(d(i− 1, j) + 1, d(i, j − 1) + 1, d(i− 1, j − 1) + (ui ̸= vj))

Proof of Theorem 1. Consider an optimal sequence of edits that transforms u[1 : i] to v[1 : j]. We
may assume that these edits are performed on u from right to left. Consider the first operation that
is performed on u.

Case 1. The first edit in u’s transformation is to add a letter to the end of u. In this case the added
letter will match vj. Hence, after adding this final letter we must now transform u[1 : i] to v[1 : j−1].
This can be optimally done in d(i, j − 1) steps. Hence, adding 1 for the initial letter addition yields
d(i, j − 1) + 1 steps.

Case 2. The first edit in u’s transformation is to remove the last letter of u. If we are optimally
transforming u to v, and the first step is to remove a letter at the end of u, then clearly this letter
must be ui. Hence, after the removal, we must subsequently transform u[1 : i−1] to v[1 : j]. This can
be optimally done in d(i−1, j) steps. Hence, adding 1 for the initial letter deletion yields d(i−1, j)+1
steps.

Case 3. The first edit in u’s transformation is to change ui to vj. If this is the first edit, then we
must subsequently transform u[1 : i − 1] to v[1 : j − 1]. The number of steps to perform this is
d(i− 1, j − 1). Hence, adding 1 for the initial letter change yields d(i− 1, j − 1) + 1 steps.

Case 4. The first edit that transforms u[1 : i] to v[1 : j] occurs somewhere before ui, and hence
ui = vj. In this case we are actually transforming u[1 : i− 1] to v[1 : j − 1], which can be optimally
performed in d(i− 1, j − 1) steps.

8

Example 4. Let u = claim and v = climb. In optimally transforming u to v, what case applies
for the first edit? Same question for u = gingerale and v = ginger, u = hurts and v = hertz, and
u = storm and v = warm.

9

Notice that d(u, v) can be computed by the method of dynamic programming, since the edit distance
between two words is reduced to finding the edit distance between two smaller words that are prefixes
of the two original words. Here the problem is to compute d(m,n), and the subproblems are to
compute d(i, j), for each 0 ≤ i ≤ m and 0 ≤ j ≤ n. The subproblems are stored in a matrix for
future access. This is called memoization. For example, d(3, 2) can be computed by comparing
d(3, 1), d(2, 2), and d(2, 1), which have all been previously stored in the matrix. This yields a total
of Θ(mn) steps to compute the edit distance.

Example 5. Show the dynamic-programming matrix that is formed when computing the edit
distance of u = fast and v = cats.

10

Optimal Binary Search Tree

Suppose a binary tree T holds keys k1, . . . kn (henceforth, and without loss of generality, assume that
ki = i). Let wi denote a weight that is assigned to ki. A large (respectively, small) weight means
that ki is accessed more (respectively, less) often. Now, if di denotes the depth of ki (e.g. the root
has depth 1), then the weighted access cost of T is defined as

wac(T) =
n∑

i=1

widi.

Example 6. Suppose keys 1-5 have respective weights 50,40,20,30,40, and are inserted into an
intially empty binary search tree T in the order 1,5,2,4,3. Determine wac(T).

11

Thus, the problem to be solved is to find a binary search tree that holds keys 1, . . . , n, and has minimal
weighted access cost. The main insight that leads to a dynamic-programming recurrence for solving
this problem is to observe that a binary search tree itself is a recursive structure. Moreover, consider
the optimal tree Topt and suppose it has root k ∈ {1, . . . , n}. Let TL and TR denote the respective left
and right subtrees of the root. Then TL and TR are themselves optimal substructures, meaning
that TL is the solution to finding a binary-search tree that has minimum weighted access cost, and
which holds keys 1, . . . , k−1, and TR is the solution to finding a binary-search tree that has minimum
weighted access cost, and which holds keys k + 1, . . . , n. Suppose otherwise. For example, suppose
T ′ is a binary search tree that holds keys 1, . . . , k − 1, and for which wac(T ′) < wac(TL). Then we
could replace TL with T ′ in Topt and obtain a binary search tree over keys 1, . . . , n that has a smaller
weighted access cost than Topt, which is a contradiction.

The above insight suggest that we define wac(i, j) as the minimum weighted access cost that can be
attained by a binary search tree that holds keys i, . . . , j. Then the above insight also suggests the
following recurrence:

wac(1, n) = wk + wac(1, k − 1) + wac(k + 1, n).

In words, the weighted access cost of Topt is the cost wk(1) of accessing the root, plus the total cost
of accessing keys in TL, plus the total cost of accessing keys in TR. But the above recurrences in not
quite correct. For example the quantity wac(1, k− 1) makes the assumption that TL is not a subtree
of some other tree. In other words, it assumes that the root r of TL has a depth of 1, the children of
r have a depth of 2, etc.. However, since TL is the left subtree of the root of Topt, r instead has a
depth of 2, while its children have a depth of 3, etc.. In general, if node i of TL contributes widi to
wac(1, k − 1) then it must contribute wi(di + 1) when TL is a subtree of Topt. This means that an

additional wi must be added to wac(1, k − 1). Hence, the above recurrence must be re-written as

wac(1, n) = wk + wac(1, k − 1) +
k−1∑
r=1

wr + wac(k + 1, n) +
n∑

r=k+1

wr =

wac(1, k − 1) + wac(k + 1, n) +
n∑

r=1

wr.

Finally since, we do not know offhand which key will serve as the root to Topt, we must minimize
the above quantity over the different possible values of k. This leads to the following theorem.

Theorem 1. Let wac(i, j) denote the minimum attainable weighted access cost for any binary search
tree that holds keys i, i+ 1, . . . , j. Then

wac(i, j) =


0 if j < i
wi if i = j

min
i≤k≤j

(wac(i, k − 1) + wac(k + 1, j)) +
∑j

r=i wr otherwise.

Theorem 1 provides the dynamic-programming recurrence needed to solve the Optimal Binary Search
Tree problem. We must compute each entry wac(i, j) of the wac matrix for all values 1 ≤ i ≤ j ≤ n.
It is an exercise to show that this matrix can be computed in Θ(n3) steps.

12

Example 7. Use dynamic programming to determine the binary search tree of minimum weighted-
access cost, and whose keys and weights are provided in Example 6.

Matrix wac

i/j j = 1 j = 2 j = 3 j = 4 j = 5
i = 1

i = 2

i = 3

i = 4

i = 5

13

Example 7 Continued.

14

Matrix-Chain Multiplication

A product P of matrices is said to be fully parenthesized iff

� basis step: P = (A), for some matrix A

� inductive step: P = (P1 · P2), where P1 and P2 are fully parenthesized matrix products.

Example 8. How many ways can a product of four matrices be fully parenthesized?

15

Given a fully parenthesized product of matrices P , the multiplication complexity, mc(P), is
defined inductively as follows.

� basis step: if P = (A), for some matrix A, then mc(P) = 0.

� inductive step: if P = (P1 · P2), where P1 and P2 are fully parenthesized matrix products
which respectively evaluate to p× q and q × r matrices, then

mc(P) = mc(P1) +mc(P2) + pqr.

16

Example 9. Given matrices A,B,and C with respective dimensions 10×100, 100×5, and 5×50, find
mc(A(BC)) and mc((AB)C). Conclude that the parenthesization of a product of matrices affects
the multiplication complexity.

17

Matrix-Chain Multiplication Problem: Given a chain of matricesA1, . . . , An, find a full parenthesization
P of the sequence for which mc(P) is minimum.

Similar to the Optimal Binary Search Tree problem, we make the following key obervations about
an optimal parenthesization P .

1. if P = (A) for some matrix A, then mc(P) = 0

2. if P = (P1P2) where P1 is a full parenthesization for A1, . . . , Ak and P2 is a full parenthesization
for Ak, . . . , An, then P1 is the optimal parenthesization for the problem of minimizing the
multiplication complexity for A1, . . . , Ak, and P2 is the optimal parenthesization for the problem
of minimizing the multiplication complexity for Ak, . . . , An. In other words, if P is an optimal
strucutre, then P1 and P2 are optimal substructures.

Thus, we see that the matrix-chain multiplication problem may also be solved by a bottom-up
dynamic-programming algorithm, where the subproblems involve finding the optimal parenthesization
of matrix sequences of the formAi, . . . , Aj. Let p0, p1, . . . , pn denote the dimension sequence associated
with the matrix sequence A1, . . . , An (for example, A1 is a p0 × p1 matrix). Let mc(i, j) denote
the minimum multiplication complexity for the sequence Ai, . . . , Aj. Let P be the optimal full
parenthesization for Ai, . . . , Aj . If P = (Ai), then i = j and mc(i, j) = 0. Otherwise, P = (P1P2)
where e.g. P1 is the optimal full parenthesization of Ai, . . . , Ak, for some i ≤ k < j. Then

mc(i, j) = mc(i, k) + mc(k + 1, j) + pi−1pkpj. (1)

We summarize as follows:

1. if i = j, then mc(i, j) = 0

2. if i < j, then mc(i, j) = mini≤k<j{mc(i, k) + mc(k + 1, j) + pi−1pkpj}

We may store the values mc(i, j) in a matrix mc, and store the values k which minimize the complexity
in a matrix k. For example, s(i, j) = k means that k is the index which minimizes the sum in
Equation 1.

18

Example 10. Given the five matrices below, find a full parenthesization of A1, . . . , A5 with minimum
multiplication complexity.

matrix dimension
A1 2× 4
A2 4× 2
A3 2× 1
A4 1× 5
A5 5× 2

Matrix mc

i/j j = 1 j = 2 j = 3 j = 4 j = 5
i = 1

i = 2

i = 3

i = 4

i = 5

Matrix k

i/j j = 1 j = 2 j = 3 j = 4 j = 5
i = 1

i = 2

i = 3

i = 4

i = 5

19

Finding Distances in a Graph

Consider the problem of finding the minimum-cost path between two vertices of a weighted graph
G = (V,E, c), where c : E → R+ assigns a travel cost to each edge e ∈ E. Then the cost of the path
P = e1, e2, . . . , em is defined as

c(P) =
m∑
i=1

c(ei).

Moreover, the distance d(u, v) between u and v is defined as the cost of the path from u to v
which minimizes the above sum. In other words, d(u, v) is the cost of the minimum-cost path from
u to v.

Example 11a. Let G = (V,E, c) be the directed graph shown below. Determine the distance of
each vertex from vertex 1.

1 2 3

4 5

1

3

1

1

4

1

1

1

20

A dynamic-programming recurrence for acyclic graphs

If G = (V,E) is acyclic, then the single-source distances problem can be solved in linear time as
opposed to log-linear using Dijkstra’s algorithm. We do this using the following recurrence, where
we assume that s this the source vertex.

d(s, v) =


0 if s = v
∞ if deg+(v) = 0
min(s,u)∈E(d(s, u) + c(u, v)) otherwise

To efficiently use the recurrence, first perform a topological sort of all the vertices that are reachable
from s. By topological sort we mean a linear ordering of the vertices, where, if (u, v) ∈ E, then u
comes before v in the order.

Now let s = v0, v1, . . . , vk be the sorted order and suppose that d(s, v1), . . . , d(s, vj−1) have all been
computed, then d(s, vj) may be readily computed using the above recurrence. Moreover, the number
of computations is proportional to the number of edges and hence is linear in the size of the graph.
Note that topologically sorting vertices may be done in linear time (Exercise!).

21

Example 11b. Apply the dynamic-programming recurrence for acyclic graphs to the graph shown
below in order to compute the distance from vertex 1 to every other vertex.

1 2 3

4 5

1

3

1

1

4

1

1

22

Finding distances between all pairs of vertices

Given a graph G = (V,E, c), the all-pairs distances problem is the problem of computing the
distance d(u, v), for each vertex pair u, v ∈ V .

One way of solving the all-pairs distances problem is to apply Dijkstra’s algorithm n times, where
the i th application of the algorithm uses vertex i as the source. This gives a worst-case running time
of O(mn log n), which works well in cases where m(n) = o(n2), where m(n) is the number of edges
as a function of the number of vertices. However, in cases where m(n) = Θ(n2), there is a better
approach known as the Floyd-Warshall algorithm.

23

Floyd-Warshall algorithm

We now give the Floyd-Warshall dynamic-programming algorithm for finding the distance between all
pairs of graph vertices. It is based on the following simple principle. Suppose P = u = v0, v1, . . . , vm =
v is a minimum-cost path between vertices u and v of graph G. Then for any 0 < k < n, the two
paths

P1 = u = v0, v1, . . . , vk

and
P2 = vk, vk+1, . . . , vm

must both be minimum-cost paths. For otherwise one of them could be replaced by a minimum-cost
path that would then yield a shorter distance from u to v. In other words, a minimum-cost path has
optimal substructures, in that every subpath of a minimum-cost path is also a minimum-cost path.
It is interesting to note that the same is not true for maximum-cost paths.

The benefit of optimal substructures in minimum-cost paths is the following. Let m be the number
of edges in a minimum-cost path from vertex u to vertex v in graph G. Then there are two cases.

� Case 1: m = 1. Then the d(u, v) is the cost of the edge from u to v in graph G (Note: if u is
not adjacent to v, then we may assume an edge between them with a cost of ∞).

� Case 2: m > 1. Then there exists vertex w such that d(u, v) = d(u,w) + d(w, v), where the
lengths of the minimum-cost paths from u to w and from w to v do not exceed m− 1.

Now assume {1, 2, . . . , n} are the vertices of G, and let cij denotes the cost of the edge connecting
vertex i to vertex j. The above observations suggest that we build up a minimum-cost path from u
to v by piecing together two paths, each of smaller length. But rather than allowing for the “joining”
vertex w to be chosen from any of the n vertices, we instead build in stages, where in stage k,
k = 1, 2, . . . , n, we allow for the joining vertex to be vertex k. With this in mind, we let dkij denote
the distance from vertex i to vertex j taken over all those paths whose internal vertices (i.e. vertices
occuring between i and j) are a subset of {1, 2, . . . , k}.

For k = 0, we set d0ij = cij, if i ̸= j, and zero otherwise. In this case d0ij represents the distance over
all paths from i to j which do not possess any internal vertices. Of course, such paths must have
lengths equal to either zero (a single vertex) or one (two vertices connected by edge eij and having
cost cij).

For k > 0 and i ̸= j, consider dkij and the minimum-cost path P from i to j that is restricted to
using internal vertices {1, . . . , k}. If P does not visit vertex k, then P is also a minimum-cost path
from i to j that is restricted to using internal vertices {1, . . . , k − 1}. Hence, dkij = dk−1

ij . Otherwise,
if P visits k, then, by the principle of optimal subpaths of an optimal path, P = P1P2, where P1 is
a minimum-cost path from i to k, and P2 is a minimum-cost path from k to j, where both paths

24

are restricted to using internal vertices {1, . . . , k − 1}. Hence, dkij = dk−1
ik + dk−1

kj . Hence, dkij can be

computed by taking the minimum of the quantities dk−1
ij and dk−1

ik + dk−1
kj .

The above paragraphs are now summarized by the following dynamic-programming recurrence.

dkij =


0 if i = j
cij if k = 0

min(d
(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj) if k ≥ 1

Notice that dnij gives the distance from vertex i to vertex j over all paths whose internal vertices
form a subset of {1, 2, . . . , n}, which is precisely the distance from i to j over all possible paths, and
is precisely what we desired to compute. The following example provides some intuition as to why
the minimum-cost path between i and j will always be constructed. In other words, the restrictions
placed on the joining vertex at each stage is not detrimental to obtaining the optimal path.

25

Example 12. Suppose P = 8, 6, 1, 4, 2, 5 is a minimum-cost path. Show the order in which the Floyd-
Warshall Algorithm (as implied by the dynamic-programming recurrence relation) pieces together P
from smaller minimum-cost paths. For each path, indicate the k value for which the cost of the path
is first recorded in dkij.

26

Example 13. Run the Floyd-Warshall Algorithm on the Graph from Example 12. Show each of the
matrices dkij.

1 2 3

4 5

1

3

1

1

4

1

1

1

27

Example 13 Continued.

28

Exercises

1. Let fn denote the n th Fibonacci number. If fn has closed-form

fn = c1(
1 +

√
5

2
)n + c2(

1−
√
5

2
)n,

determine the values of c1 and c2.

2. Prove that fn has exponential growth. Hint: what can be say about the asymptotic growth of
a sum of functions?

3. Solve the following 0-1 knapsack problem using dynamic-programming.

item weight profit
1 1 2
2 2 4
3 3 5
4 4 5
5 2 2
6 1 3

with knapsack capacity 8.

4. For 0-1 knapsack, devise recursive algorithm that takes as inputs matrix P (i, c), the array w of
weights, the array p of profits, the number of items i, and the knapsack capacity c, and prints
a list of the items that are used to obtain a profit P (i, c).

5. Determine the edit distance between u = lovely and v = waver.

6. Provide the dynamic-programming matrix that is needed to efficiently compute the edit-distance
between u=block and v=slacks. Circle one of the optimal paths and provide the sequence of
edits that this path represents in transforming u to v.

7. Provide the dynamic-programming matrix that is needed to efficiently compute the edit-distance
between u=paris and v=alice. Circle one of the optimal paths and provide the sequence of edits
that this path represents in transforming u to v.

8. The Longest Common Subsequence (LCS) problem is the problem of finding the longest (non-
contiguous) sequence of characters that are common to both strings u and v. For example,
if u = aaccabc, and v = ababab, then aaab is the longest common subsequence. Provide a
dynamic-programming recurrence for lcs(i, j), the length of the longest common subsequence
for u[1 : i] and v[1 : j]. Using a matrix, apply your recurrence to the strings u = bcabac and
v = abacca.

9. Suppose keys 1-5 have respective weights 30,60,10,80,50, and are inserted into an intially empty
binary search tree T in the order 5,2,1,3,4. Determine wac(T).

10. Use dynamic programming to determine the binary search tree of minimum weighted-access
cost, and whose keys and weights are provided in the previous problem.

29

11. Let K(i, j) denote the key of the root for the optimal bst that stores keys i, i+1, . . . , j. Devise
recursive Java algorithm that takes as inputs K and n (the dimension of K, and hence the
number of keys in the tree) that returns an optimal bst. Use the class

public class BST

{

int key; //key value stored in the root of this BST

BST left; //the left subtree of the root of this BST

BST right; //the right subtree of the root fo this BST

BST(int key,BST left, BST right); //constructor

}

12. Determine the running time of the Optimal Binary Search Tree dynamic programming algorithm.
Hint: first determine a formula for the number of steps needed to compute wac(i, j). Then sum
over i and j.

13. How many ways are there to fully parenthesize a product of five matrices.

14. What is the multiplication complexity of A(BC) if A has size 2× 10, B has size 10× 20, and
C has size 20× 7? Same question for (AB)C.

15. Use a dynamic programming algorithm to determine the minimum multiplication complexity
of A1A2A3A4A5, where the dimension sequence is 5, 7, 3, 9, 4, 2.

16. Let G = (V,E, c) be a directed graph, where

V = {1, 2, 3, 4, 5, 6}

and the directed edges-costs are given by

E = {(1, 5, 1), (2, 1, 1), (2, 4, 2), (3, 2, 2), (3, 6, 8), (4, 1, 4), (4, 5, 3), (5, 2, 7), (6, 2, 5)}.

Provide a geometical representation of graph G.

17. Find all-pairs distances for graph G in the previous problem by performing the Floyd-Warshall
Algorithm. Show the matrix sequence d0, . . . , d6.

18. Write a recursive algorithm which, on inputs d(0), d(n), i, and j, prints the sequence of vertices
for a minimum-cost path from i, to j, 1 ≤ i, j ≤ n, where d(0) is the n × n cost-adjacency
matrix, while d(n) is the final matrix obtained from the Floyd-Warshall algorithm.

19. In the Floyd-Warshall algorithm, give a geometrical argument as to why, when computing
matrix dk, 1 ≤ k ≤ n, neither row k nor column k change from d(k−1) to dk.

20. Consider a simple path for a directed network that represents a maximum-cost path from vertex
i to j. Do such paths have the optimal substructure property? Explain.

30

21. Use the dynamic-programming recurrence for single-source distances in an acyclic graph (see
the recurrence before Example 11b) to compute d(a, v), for each vertex v in the following graph.
Here we assume that a is the source.

a b c

d e f

1

2
5

2

1
7

1

2

1

3

22. Use a variation of the dynamic-programming recurrence for single-source distances in an acyclic
graph (see the recurrence before Example 11b) to compute the longest path from source a to
all other vertices. Provide the modified recurrence and apply it to the following graph. Hint:
we are assuming that all edge costs equal 1.

a b c

d e f

23. Given an array of n integers, the problem is to determine the longest increasing subsequence
of integers in that array. Note: the sequence does not necessarily have to be contiguous. Show
how the previous problem can be used to solve this problem, by constructing the appropriate
graph. Hint: the vertices of the graph should consist of the n integers.

24. A production plant has two assembly lines. Each line has 3 stations. Matrix

A =

(
3 5 6
4 2 7

)
is a 2 × 3 matrix for which aij gives the processing times for an item that is being assembled
at station j of line i. When an item finishes stage j < 3 of line i, it has the option of either
remaining on line i and proceeding to stage j + 1, or moving to the other line, and then
proceeding to stage j + 1. If it chooses to stay on the same line, then it requires 0.5 units of
time to move to the next station. Otherwise it requires 2 units of time to move to the next
station located on the other line. Show how this problem can be reduced to finding the distance
between two vertices in an acyclic graph. Draw the graph and apply the single source distances
recurrence for acyclic graphs to determine the “distance” (i.e. minimum processing time) and
optimal path through the assembly plant.

25. Given n cities, let C be an n× n matrix whose Cij entry represents the cost in traveling from
city i to city j. Determine a dynamic-programming recurrence relation that will allow one to
determine a minimum-cost tour that begins at city 1 and visits every other city exactly once.

31

Hint: let mc(i, A) denote the minimum-cost tour that begins at city i and visits every city in
A which is a subset of the cities, and does not include i. Determine a recurrence for mc(i, A).

26. Apply the recurrence from the previous exercise to the following graph. Again, assume the tour
begins at 1.

1 2

3 4

3

6

5

2

1

5

32

Solutions to Exercises

1. ±
√
5/5

2. Prove that fn = Θ((1+
√
5

2
)n)

3.

xi, c 0 1 2 3 4 5 6 7 8
x1 0 2 2 2 2 2 2 2 2
x2 0 2 4 6 6 6 6 6 6
x3 0 2 4 6 7 9 11 11 11
x4 0 2 4 6 7 9 11 11 12
x5 0 2 4 6 7 9 11 11 13
x6 0 3 5 7 9 10 12 14 14

4. void print_items(Matrix P, int[] w, int[] p, int i, int c)

{

//base case

if(i == 0 || c == 0)

return;

if(P[i-1,c] != P[i,c])

{

print_items(P, w, p,i-1,c-w[i]);

print i;

return;

}

print_items(P, w, p,i-1,c);

}

5. 4

6. In matrix, “l” stands for left, “u” for up, and “d” for diagonal.

λ s l a c k s
λ 0 1,l 2,l 3,l 4,l 5,l 6,l
b 1,u 1,d 2,ld 3,ld 4,ld 5,ld 6,ld
l 2,u 2,du 1,d 2,l 3,l 4,l 5,l
0 3,u 3,du 2,u 2,d 3,ld 4,ld 5,ld
c 4,u 4,du 3,u 3,du 2,d 3,l 4,l
k 5,u 5,du 4,u 4,du 3,u 2,d 3,l

Optimal transformation: b → s, o → a, +s

7. In matrix, “l” stands for left, “u” for up, and “d” for diagonal.

33

λ a l i c e
λ 0 1,l 2,l 3,l 4,l 5,l
p 1,u 1,d 2,ld 3,ld 4,ld 5,ld
a 2,u 1,d 2,ld 3,ld 4,ld 5,ld
r 3,u 2,u 2,d 3,ld 4,ld 5,ld
i 4,u 3,u 3,du 2,d 3,l 4,l
s 5,u 4,u 4,du 3,u 3,d 4,ld

Optimal transformation: −p, r → l, s → c, +e

8. If either u or v is empty, then lcs(i, j) = 0. Now suppose both u and v are nonempty and
ui ̸= vj. In this case the lcs either does not use ui or does not use vj (why?). Thus, we get the
recurrence lcs(i, j) = max(lcs(i − 1, j), lcs(i, j − 1)). Finally, if ui = vj, then the lcs must end
with ui (why?), and we may assume that either ui or vj (or both) is used in constructing the
lcs. Hence, lcs(i, j) = lcs(i− 1, j − 1) + 1. Putting all the above together, we get the following
recurrence.

lcs(i, j) =


0 if i = 0 or j = 0
max(lcs(i− 1, j), lcs(i, j − 1)) if ui ̸= vj
lcs(i− 1, j − 1) + 1 otherwise

Using the matrix below, we find that the lcs for strings u = bcabac and v = abacca equals
abac.

λ a b a c c a
λ 0 0 0 0 0 0 0
b 0 0,lu 1,d 1,l 1,l 1,l 1,l
c 0 0,lu 1,u 1,lu 2,d 2,d 2,l
a 0 1,d 1,lu 2,d 2,lu 2,lu 3,d
b 0 1,u 2,d 2,lu 2,lu 2,lu 3,u
a 0 1,d 2,u 3,d 3,l 3,l 3,d
c 0 1,u 2,u 3,u 4,d 4,d 4,l

9. wac(T) = 50 + (2)(60) + 3(30 + 10) + (4)(80) = 610

10. Entries of the form wac(i, j)/k give the optimal weighted access cost , followed by the root k
of the corresponding optimal tree.

i/j 1 2 3 4 5
1 30 120/2 140/2 310/2 420/4
2 0 60 80/2 230/4 330/4
3 0 0 10 100/4 200/4
4 0 0 0 80 180/4
5 0 0 0 0 50

The optimal tree root has key 4, while the optimal left sub-tree has root key 2.

11. BST optimal_bst(Matrix K, int i, int j)

{

if(i==j)

return new BST(i,null,null)

34

int k = K[i,j];

return new BST(k,optimal_bst(K,i,k-1),optimal_bst(K,k+1,j);

}

12. Θ(n3). Ciomputing entry (i, j) requires Θ(j − i + 1) steps. Hence, the running time is
proportional to

∑n
i=1

∑n
j=i(j − i + 1). Moreover, using basic summation formulas (see the

exercises from the Big-O lecture), one can show that this sum is Θ(n3).

13. 14

14. A(BC): 1540, (AB)C: 680

15. Each entry is of the form m(i, j), k

i/j 1 2 3 4 5
1 0 105 240/2 273/2 238/1
2 0 0 189 192/2 168/2
3 0 0 0 108 126/3
4 0 0 0 0 72
5 0 0 0 0 0

16. (a, b, c) means the directed edge incident with a and b, and having cost c.

17.

d0 =


0 ∞ ∞ ∞ 1 ∞
1 0 ∞ 2 ∞ ∞
∞ 2 0 ∞ ∞ 8
4 ∞ ∞ 0 3 ∞
∞ 7 ∞ ∞ 0 ∞
∞ 5 ∞ ∞ ∞ 0



d2 =


0 ∞ ∞ ∞ 1 ∞
1 0 ∞ 2 2 ∞
3 2 0 4 4 8
4 ∞ ∞ 0 3 ∞
8 7 ∞ 9 0 ∞
6 5 ∞ 7 7 0


d3 = d2 (why?) d4 = d3.

d5 =


0 8 ∞ 10 1 ∞
1 0 ∞ 2 2 ∞
3 2 0 4 4 8
4 10 ∞ 0 3 ∞
8 7 ∞ 9 0 ∞
6 5 ∞ 7 7 0


d5 = d6 (why?)

35

18. void print_optimal_path(Matrix d0, Matrix dn, int n, int i, int j)

{

if(d0[i,j]==dn[i,j]])//optimal path is a direct connection

{

print i + " " + j;

return;

}

//optimal path has a final intermediate vertex k. Find k

int k;

for(k = 1; k <= n; k++)

{

if(k != j && dn[i,k]+d0[k,j] == dn[i,j])//found parent k

{

print_optimal_path(d0,dn,n,i,k);

print " " + j;

}

}

}

19. Row k represents distances from k, while column k represents distances to k. Thus, none of
these distances can improve when allowing k to be an intermediate vertex, since the optimal
paths either begin or end at k.

20. See the graph below. P = a, b, c, d is a maximum-cost simple path from a to d, but P ‘ = a, b
is not a maximum-cost path from a to b. Hence, maximum-cost simple paths do not possess
optimal substructures.

a d

b c

3 5

2

2

4

21. Start with the source, then proceed to the next vertex v for which d(a, u) has already been
computed, for each parent u of v.

d(a, a) = 0.

d(a, b) = d(a, a) + 1 = 1.

d(a, d) = d(a, a) + 2 = 2.

d(a, e) = min(d(a, a) + 5, d(a, b) + 1, d(a, d) + 2) = 2.

d(a, c) = min(d(a, b) + 2, d(a, e) + 1) = 3.

d(a, f) = min(d(a, b) + 7, d(a, c) + 1, d(a, e) + 3) = 4.

36

22.

l(a, v) =


0 if a = v
∞ if deg+(v) = 0
max

(u,v)∈E
(l(a, u)) + 1 otherwise

1

l(a, a) = 0.

l(a, b) = l(a, a) + 1 = 1

l(a, d) = l(a, a) + 1 = 1

l(a, e) = max(l(a, a), l(a, b), l(a, d)) + 1 = 2.

l(a, c) = max(l(a, b), l(a, e)) + 1 = 3.

l(a, f) = max(l(a, b), l(a, c), l(a, e)) + 1 = 4.

23. Define the directed graph G = (V,E) so that V is the set of integers and (m,n) ∈ E iff m ≤ n
and m appears before n in the array. Then the longest increasing subsequence corresponds
with the longest path of G.

24. Define a weighted directed acyclic graph as follows for each station Sij define nodes eij and fij,
where eij denotes the entry point to Sij, and fij denotes its finish point. Add the edge (eij, fij)
and give it weight aij, the time needed to process an item at Sij. Next, for each node fij, j < 3,
add the edges (fij, ei(j+1), 0.5), (fij, ei′(j+1), 2), where i

′ = 2 if i = 1, and i′ = 1 if i = 2. Finally,
add source vertex s and connect it to both e11 and e21 using 0-weight edges. The graph for the
production-plant assembly lines is shown below. The least processing time can now be found
by computing the minimum of d(f13) and d(f23).

s e11 f11 e12 f12 e13 f13

e21 f21 e22 f22 e23 f23

0

0

3 0.5 5 0.5 6

4 0.5 2 0.5 7

2 2

2 2

25. Let mc(i, A) denote the minimum-cost tour that begins at city i and visits every city in A,
where A is a subset of cities that does not include i. Then

mc(i, A) =


0 if A = ∅
Cij if A = {j}
min
j∈A

(Cij +mc(j, A− {j}) otherwise

26. Start with mc(1, {2, 3, 4}) and proceed to compute other mc values as needed.

mc(1, {2, 3, 4}) = min(2 + mc(2, {3, 4}), 3 + mc(3, {2, 4}), 6 + mc(4, {2, 3})).

mc(2, {3, 4}) = min(1 + mc(3, {4}), 5 + mc(4, {3})) = min(1 + 5, 5 + 5) = 6.

37

mc(3, {2, 4}) = min(1 + mc(2, {4}), 5 + mc(4, {2})) = min(1 + 5, 5 + 5) = 6.

mc(4, {2, 3}) = min(5 + mc(2, {3}), 5 + mc(3, {2})) = min(5 + 1, 5 + 1) = 6.

Therefore,

mc(1, {2, 3, 4}) = min(2 + mc(2, {3, 4}), 3 + mc(3, {2, 4}), 6 + mc(4, {2, 3})) =

min(2 + 6, 3 + 6, 6 + 6) = 8.

38

