
Greedy Graph Algorithms

Last Updated: October 4th, 2023

1 Review of Graph Terminology

A graph G = (V,E) is a pair of sets V and E, where V is the vertex set and E is the edge set for
which each member e ∈ E is a pair (u, v), where u, v ∈ V are vertices. Unless otherwise noted, we
assume that G is simple, meaning that i) each pair (u, v) appears at most once in E, and ii) G has
no loops (i.e. no pairs of the form (u, u) for some u ∈ V), and iii) each edge is undirected, meaning
that (u, v) and (v, u) are identified as the same edge.

The following graph terminology will be used repeatedly throughout the course.

Adjacent u, v ∈ G are said to be adjacent iff (u, v) ∈ E.

Incident e = (u, v) ∈ E is said to be incident with both u and v.

Directed and Undirected Graphs G is said to be undirected iff, for all u, v ∈ V , the edges
(u, v) and (v, u) are identified as the same edge. On the other hand, in a directed graph (u, v)
means that the edge starts at u and ends at v, and one must follow this order when traversing
the edge. In other words, in a directed graph (u, v) is a “one-way street”. In this case u is
referred to as the parent vertex, while b is the child vertex.

Vertex Degree The degree of vertex v in a simple graph, denoted deg(v), is equal to the number
of edges that are incident with v. Handshaking property: the degrees of the vertices of a graph
sum to twice the number of edges of the graph.

Weighted Graph G is said to be weighted iff each edge of G has a third component called its
weight or cost.

Path A path P in G of length k from v0 to vk is a sequence of vertices P = v0, v1, . . . , vk, such
that (vi, vi+1) ∈ E, for all i = 0, . . . , k − 1. In other words, starting at vertex v0 and traversing
the k edges (v0, v1), . . . , (vk−1, vk), one can reach vertex vk. Here v0 is called the start vertex
of P , while vk is called the end vertex.

1

Simple Path P = v0, v1, . . . , vk is a called a simple path iff v0, v1, . . . , vk are all distinct.

Connected Graph G is called connected iff, for every pair of vertices u, v ∈ V there is a path
from u to v in G.

Cycle A path P having length at least three is called a cycle iff its start and end vertices are
identical. Note: in the case of directed graphs, we allow for cycles of length 2.

Acyclic Graph G is called acyclic iff it admits no cycles.

Tree Simple graph G is called a tree iff it is connected and has no cycles.

Forest A forest is a collection of trees.

Subgraph H = (V ′, E ′) is a subgraph of G iff i) V ′ ⊆ V , ii) E ′ ⊆ E, and iii) (u, v) ∈ E ′ implies
u, v ∈ V ′.

The proof of the following Theorem is left as an exercise.

Theorem 1.1. If T = (V,E) is a tree, then

1. T has at least one degree-1 vertex, and

2. |E| = n− 1.

2

SF OAK

LA SJ

SD SB

Figure 1: Graphical Representation of G

Example 1.2. Let G = (V,E), where

V = {SD, SB, SF, LA, SJ,OAK}

are cities in California, and

E = {(SD,LA), (SD, SF), (LA, SB), (LA, SF), (LA, SJ), (LA,OAK), (SB, SJ)}

are edges, each of which represents the existence of one or more flights between two cities. Figure 1
shows a graphical representation of G. G has order 6 and size 7.

Figure 2 shows a simple path of length 4. Figure 3 shows a cycle of length 3. Let’s verify the
Handshaking theorem.

deg(SF) + deg(LA) + deg(SD) + deg(OAK) + deg(SJ) + deg(SB) =

2 + 5 + 2 + 1 + 2 + 2 = 14 = 2 · 7 = 2|E|.

3

SF OAK

LA SJ

SD SB

Figure 2: Simple path (in red) P = SF,SD,LA,SJ,SB of length 4

SF OAK

LA SJ

SD SB

Figure 3: Cycle (in red) C = SF,SD,LA,SF of length 3

4

2 Minimum Spanning Tree Algorithms

Let G = (V,E) be a simple connected graph. Then a spanning tree T = (V,E ′) of G is a subgraph
of G which is also a tree. Notice that T must include all the vertices of G. Thus, a spanning tree of G
represents a minimal set of edges that are needed by G in order to maintain connectivity. Moreover,
if G is weighted, then a minimum spanning tree (mst) of G is a spanning tree whose edge weights
sum to a minimum value.

Example 2.1. Consider a problem in which roads are to be built that connect all four cities a, b, c,
and d to one another. In other words, after the roads are built, it will be possible to drive from any
one city to another. The cost (in millions) of building a road between any two cities is provided in
the following table.

cities a b c d
a 0 30 20 50
b 30 0 50 10
c 20 50 0 75
d 50 10 75 0

Using this table, find a set of roads of minimum cost that will connect the cities.

5

2.1 Kruskal’s Algorithm

In this section we present Kruskal’s greedy algorithm for finding an MST in a simple weighted
connected graph G = (V,E).

Kruskal’s algorithm builds a minimum spanning tree in greedy stages. Assume that V = {v1, . . . , vn},
for some n ≥ 1. Define forest F that has n trees T1, . . . , Tn, where Ti consists of the single vertex
vi. Sort the edges of G in order of increasing weight. Now, following this sorted order, for each edge
e = (u, v), if u and v are in the same tree T , then continue to the next edge, since adding e will
create a cycle in T . Otherwise, letting Tu and Tv be the respective trees to which u and v belong,
replace Tu and Tv in F with the single tree Tu+v that consists of the merging of trees Tu and Tv via
the addition of edge e. In other words,

Tu+v = (Vu+v, Eu+v) = (Vu ∪ Vv, Eu ∪ Ev ∪ {e}),

and
F ← F − Tu − Tv + Tu+v.

The algorithm terminates when F consists of a single (minimum spanning) tree.

6

Example 2.2. Use Kruskal’s algorithm to find an mst for the graph G = (V,E), where the weighted
edges are given by

E = {(a, b, 1), (a, c, 3), (b, c, 3), (c, d, 6), (b, e, 4), (c, e, 5), (d, f, 4), (d, g, 4),

(e, g, 5), (f, g, 2), (f, h, 1), (g, h, 2)}.

7

2.2 Replacement method

The replacement method is a method for proving correctness of a greedy algorithm and works as
follows.

Greedy Solution Let S = c1, . . . , cn represent the solution produced by a greedy algorithm that
we want to show is correct. Note: ci denotes the i th greedy choice, i = 1, . . . , n.

Optimal Solution Let Sopt denote the optimal solution.

First Disagreement Let k ≥ 1 be the least index for which ck ̸∈ Sopt, i.e. c1, . . . , ck−1 ∈ Sopt, but
not ck.

Replace Transform Sopt into a new optimal solution Ŝopt for which c1, . . . , ck ∈ Ŝopt. Note: this
usually requires replacing something in Sopt with ck.

Continue Continuing in this manner, we eventually arrive at an optimal solution that has all the
choices made by the greedy algorithm. Argue that this solution must equal the greedy solution,
and hence the greedy solution is optimal.

8

Example 2.3. An instance of the Task Selection problem is a finite set T of tasks, where each
task t has a start time s(t) and finish time f(t) which indicate the interval for which the task should
be completed by a single processor. The goal is to find a subset Topt of T of maximum size whose
tasks are pairwise non-overlapping, meaning that no two tasks in Topt share a common time in which
both are being executed. Show the set of tasks that result from the following greedy algorithm. Sort
the tasks based on increasing finish time. Add the first task t in the sorted order to the solution set.
And let f denote its finish time. Next, add to the solution set the first task t′ (if it exists) in the
order for which s(t′) ≥ f . Assign f ← f(t′) and repeat until all tasks in the sorted order have been
considered.

Apply the algorithm to the following set of tasks, where each triple in set T represents the id, start
time, and finish time.

T = {(1, 9, 12), (2, 11, 17), (3, 10, 12), (4, 2, 14), (5, 2, 7), (6, 4, 9), (7, 18, 19), (8, 5, 17), (9, 6, 17),

(10, 9, 20), (11, 1, 13), (12, 9, 12), (13, 6, 15), (14, 3, 5), (15, 16, 17)}.

9

Example 2.4. Use the Replacement Method to prove the correctness of the algorithm described in
the previous example.

10

Theorem 2.5. When Kruskal’s algorithm terminates, then F consists of a single minimum spanning
tree.

Proof Using Replacement Method.

Greedy Solution Let T = e1, e2, . . . , en−1 be the edges of the spanning tree returned by Kruskal,
and written in the order selected by Kruskal. We’ll let these edges represent Kruskal’s spanning
tree T . Note: here n represents the order of problem instance G.

Optimal Solution Let Topt be an mst of G.

First Disagreement Let k ≥ 1 be the least index for which ek ̸∈ Topt, i.e. e1, . . . , ek−1 ∈ Topt,
but not ek.

Replace Consider the result of adding ek to Topt to yield the graph Topt+ek. Then, since Topt+ek
is connected and has n edges, it must have a cycle C containing ek.

Claim. There must be some edge e in C that comes after ek in Kruskal’s list of sorted edges.
Hence, w(e) ≥ w(ek).

Proof of Claim. Suppose no such edge e exists. Then all edges of C must come before ek in
Kruskal’s list of sorted edges. Moreover, these edges fall into two categories:

1. edges selected by Kruskal (i.e. e1, . . . , ek−1), and

2. edges rejected by Kruskal.

However, notice that none of the rejected edges can be in C. This is true since e1, . . . , ek−1 ∈
Topt, and so having a rejected edge in Topt would create a cycle. Therefore, this means that

C ⊆ {e1, . . . , ek−1, ek} which is a contradiction, since {e1, . . . , ek−1, ek} ⊆ T , and T has no
cycles. Therefore, such an edge e ∈ C does exist.

Now consider T̂opt = Topt − e + ek. This is a spanning tree since it is connected and the

removal of e eliminates the cycle C. Finally, since w(e) ≥ w(ek), cost(T̂opt) ≤ cost(Topt).

Continue Continuing in this manner, we eventually arrive at an mst that has all of Kruskal’s edges.
But this tree must equal Kruskal’s tree, since any two mst’s have the same number of edges.

11

Theorem 2.6. Kruskal’s algorithm can be implemented to yield a running time of T (m,n) =
Θ(m logm), where m = |E|.

Proof. Given connected simple graph G = (V,E), sort the edges of E by increasing order of weight
using Mergesort. This requires Θ(m logm) steps. The only remaining issue involves checking to see
if the vertices of an edge e belong in the same tree. This can be done with the use of the disjoint-set
data structure. Moreover, since the algorithm begins with n trees in the forest F and there are
at O(m + n) disjoint-set operations, by Theorem 2.9 of the Greedy Algorithm Introduction lecture,
checking tree membership of edge vertices can be done in O(n + m log∗ n) steps. Therefore, the
algorithm’s running time is dominated by the sorting step to give T (m,n) = Θ(m logm).

12

Example 2.7. For the weighted graph with edges

(b, d, 5), (a, e, 4), (a, b, 1), (e, c, 3), (b, f, 6), (e, d, 2),

Show how the forest of disjoint-set data structure trees changes when processing each edge in the
Kruskal’s sorted list of edges. When merging two trees, use the convention that the root of the
merged tree should be the one having lower alphabetical order. For example, if two trees, one with
root a, the other with root b, are to be merged, then the merged tree should have root a.

Solution.
Original Forest

E1. After processing first edge:

E2. After processing second edge:

E3. After processing third edge:

13

E4. After processing fourth edge:

E5. After processing fifth edge:

E6. After processing sixth edge:

14

2.3 Prim’s Algorithm

Prim’s algorithm builds a single tree in stages, where a single edge/vertex is added to the current
tree at each stage. Given connected and weighted simple graph G = (V,E), the algorithm starts by
initializing a tree T1 = ({v}, ∅), where v ∈ V is a vertex in V that is used to start the tree.

Now suppose tree Ti having i vertices has been constructed, for some 1 ≤ i ≤ n. If i = n, then the
algorithm terminates, and Tn is the desired spanning tree. Otherwise, let Ti+1 be the result of adding
to Ti a single edge/vertex e = (u,w) that satisfies the following.

1. e is incident with one vertex in Ti and one vertex not in Ti.

2. Of all edges that satisfy 1., e has the least weight.

15

Example 2.8. Demonstrate Prim’s algorithm on the graph G = (V,E), where the weighted edges
are given by

E = {(a, b, 1), (a, c, 3), (b, c, 3), (c, d, 6), (b, e, 4), (c, e, 5), (d, f, 4), (d, g, 4),

(e, g, 5), (f, g, 2), (f, h, 1), (g, h, 2)}.

Solution.

16

Theorem 2.9. Prim’s algorithm returns a minimum spanning tree for input G = (V,E).

The proof of correctness of Prim’s algorithm is very similar to that of Kruskal’s algorithm, and his
left as an exercise. Like all exercises in these lectures, the reader should make an honest attempt to
construct a proof before viewing the one provided in the solutions.

Prim’s algorithm can be efficiently implemented with the help of a binary min-heap. The first step
is to build a binary min-heap whose elements are the n vertices. A vertex is in the heap iff it has
yet to be added to the tree under construction. Moreover, the priority of a vertex v in the heap is
defined as the least weight of any edge e = (u, v), where u is a vertex in the tree. In this case, u is
called the parent of v, and is denoted as p(v). The current parent of each vertex can be stored in an
array. Since the tree is initially empty, the priority of each vertex is initialized to ∞ and the parent
of each vertex is undefined.

Now repeat the following until the heap is empty. Pop the heap to obtain the vertex u that has a
minimum priority. Add u to the tree. Moreover, if p(u) is defined, then add edge (p(u), u) to the
tree. Finally, for each vertex v still in the heap for which e = (u, v) is an edge of G, if we is less than
the current priority of v, then set the priority of v to we and set p(v) to u.

The running time of the above implementation is determined by the following facts about binary
heaps.

1. Building the heap can be performed in Θ(n) steps.

2. Popping a vertex from the heap requires O(log n) steps.

3. When the priority of a vertex is reduced, the heap can be adjusted in O(log n) steps.

4. The number of vertex-priority reductions is bounded by the number m = |E|, since each
reduction is caused by an edge, and each edge e = (u, v) can contribute to at most one reduction
(namely, that of v’s priority) when u is popped from the heap.

Putting the above facts together, we see that Prim’s algorithm has a running time of O(n+n log n+
m log n) = O(m log n).

17

Example 2.10. For the heap H used in the implementation of Prim’s algorithm, provide a plausible
state for H once the size of Prim’s tree reaches four in Example 2.8, and any increase priority

operations have been executed. Demonstrate the pop and increase priority operations (if necessary)
that occur as the result of adding the 5th vertex to Prim’s tree.

18

3 Dijkstra’s Algorithm

Let G = (V,E) be a weighted graph whose edge weights are all nonnegative. Then the cost of a
path P in G, denoted cost(P), is defined as the sum of the weights of all edges in P . Moreover, given
u, v ∈ V , the distance from u to v in G, denoted d(u, v), is defined as the minimum cost of a path
from u to v. In case there is no path from u to v in G, then d(u, v) =∞.

Dijkstra’s algorithm is used to find the distances from a single source vertex s ∈ V to every other
vertex in V . The description of the algorithm is almost identical to that of Prim’s algorithm. In
what follows we assume that there is at least one path from s to each of the other n− 1 vertices in
V . Like Prim’s algorithm, the algorithm builds a single Dijkstra distance tree (DDT) in rounds
1, 2, . . . , n, where a single edge/vertex is added to the current tree at each round. We let DDTi

denote the current DDT after round i = 1, . . . , n. To begin, DDT0 = ∅ denotes the empty tree and
DDT1 consists of the source vertex s.

Now suppose DDTi has been defined. A vertex not in DDTi is called external. An i-neighboring
path from s to an external vertex v is any path from s to v that uses exactly one edge that is not
in DDTi. For each external vertex, let di(s, v) denote the i-neighboring distance from s to v, i.e.
the minimum cost of any i-neighboring path from s to v. We set di(s, v) = ∞ in case no such path
exists (in this case we say that v is not an i-neighbor of s). Then DDTi+1 is obtained by adding
the vertex v∗ to DDTi for which di(s, v

∗) is minimum among all possible external vertices. We also
add to DDTi+1 the final edge e in the minimum-cost i-neighboring path from s to v∗. that achieves
this minimum i-neighboring distance. Notice that e joins a vertex in DDTi to v∗.

Then the final DDT is DDT = DDTn.

19

Example 3.1. Demonstrate Dijkstra’s algorithm on the directed weighted graph with the following
edges.

(a, b, 3), (a, c, 1), (a, e, 7), (a, f, 6), (b, f, 4), (b, g, 3), (c, b, 1), (c, e, 7), (c, d, 5), (c, g, 10), (d, g, 1),

(d, h, 4), (e, f, 1), (f, g, 3), (g, h, 1).

a b c d

e f g h

7

6

3

4

3

1

7

5

10 1 4

1 3

1

1

Vertex 0nd / par 1nd / par 2nd / par 3nd / par 4nd / par 5nd / par 6nd / par 7nd / par
a

b

c

d

e

f

g

h

20

The heap implementation of Prim’s algorithm can also be used for Dijkstra’s algorithm, except now
the priority of a vertex v is the minimum of d(s, u) +we, where e = (u, v) is an edge that is incident
with a vertex u in the tree. Also, the priority of s is initialized to zero.

Example 3.2. For the heap H used in the implementation of Dijkstra’s algorithm in Example 3.1,
provide a plausible state forH once the size of Dijkstra’s tree reaches three, and any increase priority

operations have been executed. Demonstrate the pop and increase priority operations (if necessary)
that occur as the result of adding the 4th vertex to Dijkstra’s tree.

21

The following theorem establishes the correctness of Dijkstra’s algorithm.

Theorem 3.3. . Let di(s, v
∗) be the minimum i-neighboring distance among all vertices that are

external to DDTi. Then
di(s, v

∗) = d(s, v∗).

Proof of Theorem 3.3. Let P be the i-neighboring path from s to v∗ for which cost(P) = di(s, v
∗).

Let R be any other path from s to v∗. Then

R = s, . . . , u, v, . . . , v∗,

where s, . . . , u ∈ DDTi, and v ̸∈ DDTi. In other words, v is the first vertex reached by R that is not
in DDTi. Vertex v must exist since v∗ ̸∈ DDTi. Thus, Q = s, . . . , u, v is an i-neighboring path and,
since P has the minimum cost of all such paths and Q is a subpath of R, we have

cost(R) ≥ cost(Q) ≥ cost(P).

Therefore, P is the minimum-cost path from s to v∗, i.e.,

di(s, v
∗) = d(s, v∗).

22

Exercises

1. Prove that a tree T (i.e. undirected and acyclic graph) of size two or more must always have
a degree-one vertex. Hint: consider the longest simple path in T . What can you say about its
start and end vertices and why?

2. Prove that a tree of size n has exactly n− 1 edges.

3. Prove that if a graph of order n is connected and has n− 1 edges, then it must be acyclic (and
hence is a tree).

4. Draw the weighted graph whose vertices are a-e, and whose edges-weights are given by

{(a, b, 2), (a, c, 6), (a, e, 5), (a, d, 1), (b, c, 9), (b, d, 3), (b, e, 7), (c, d, 5),

(c, e, 4), (d, e, 8)}.

Informally perform Kruskal’s algorithm to obtain a minimum spanning tree for G. Label each
edge to indicate its order in the Kruskal sorted order. that it was added to the forest. Break
ties be giving precedence to the edge that comes first in the above list of edges.

5. Repeat the steps of Example 2.7 but using the graph whose edge set is

E = {(f, e, 5), (a, e, 4), (a, f, 1), (b, d, 3), (c, e, 6), (d, e, 2)}.

Show how the membership trees change when processing each edge in Kruskal’s list of sorted
edges. When unioning two trees, use the convention that the root of the resulting tree should
be the one having lower alphabetical order. For example, if two trees, one with root a, the
other with root b, are to be unioned, then the resulting tree should have root a.

6. Repeat Exercise 4 using Prim’s algorithm. Assume that vertex e is the first vertex added to
the mst. Annotate each edge with the order in which it is added to the mst.

7. For the previous exercise. Show the state of the binary heap just before the next vertex is
popped. Label each node with the vertex it represents and its priority. Let the initial heap
have e as its root.

8. Does Prim’s and Kruskal’s algorithm work if negative weights are allowed? Explain.

9. Explain how Prim’s and/or Kruskal’s algorithm can be modified to find a maximum spanning
tree.

10. Draw the weighted directed graph whose vertices are a-g, and whose edges-weights are given
by

{(a, b, 2), (b, g, 1), (g, e, 1), (b, e, 3), (b, c, 2), (a, c, 5), (c, e, 2), (c, d, 7), (e, d, 3),

(e, f, 8), (d, f, 1)}.

Perform Dijkstra’s algorithm to determine the Dijkstra spanning tree that is rooted at source
vertex a. Draw a table that indicates the distance estimates of each vertex in each of the
rounds. Circle the vertex that is selected in each round.

23

11. Let G be a graph with vertices 0, 1, . . . , n−1, and let parent be an array, where parent[i] denotes
the parent of i for some shortest path from vertex 0 to vertex i. Assume parent[0] = −1;
meaning that 0 has no parent. Provide a recursive implementation of the function

void print_optimal_path(int i, int parent[])

that prints from left to right the optimal path from vertex 0 to vertex i. You may assume
access to a print() function that is able to print strings, integers, characters, etc.. For example,

print i

print "Hello"

print ’,’

are all legal uses of print.

12. Prove the correctness of Prim’s algorithm. Hint: use the proof of correctness for Kruskal’s
algorithm as a guide.

13. Prove that the Fuel Reloading greedy algorithm (See Exercise 1 of “Greedy Algorithms Overview”
Lecture) always returns a minimum set of stations. Hint: use a replacement-type argument
similar to that used in proving correctness of Kruskal’s algorithm.

14. Prove that the Task Selection algorithm (See Exercise 2 of “Greedy Algorithms Overview”
Lecture) is correct, meaning that it always returns a maximum set of non-overlapping tasks.
Hint: this is essentially Example 2.4.

15. Prove that the FK algorithm (See Exercise 4 of “Greedy Algorithms Overview” Lecture) always
returns a maximum container profit.

16. Prove that the Unit Task Scheduling greedy algorithm (See Exercise 7 of “Greedy Algorithms
Overview” Lecture) always attains the maximum profit. Hint: use the Replacement Method.

24

Exercise Solutions

1. Consider the longest simple path P = v0, v1, . . . , vk in the tree. Then both v0 and vk are
degree-1 vertices. For example, suppose there was another vertex u adjacent to v0, other than
v1. Then if u ̸∈ P , then P ′ = u, P is a longer simple path than P which contradicts the fact
that P is the longest simple path. On the other hand, if u ∈ P , say u = vi for some i > 1, then
P ′ = u, v0, v1, . . . , vi = u is a path of length at least three that begins and ends at u. In other
words, P ′ is a cycle, which contradicts the fact that the underlying graph is a tree, and hence
acyclic.

2. Use the previous problem and mathematical induction. For the inductive step, assume trees
of size n have n − 1 edges. Let T be a tree of size n + 1. Show that T has n edges. By the
previous problem, one of its vertices has degree 1. Remove this vertex and the edge incident
with it to obtain a tree of size n. By the inductive assumption, the modified tree has n − 1
edges. Hence T must have n edges.

3. Use induction.

Basis step If G has order n = 1 and 1− 1 = 0 edges, then G is clearly acyclic.

Inductive step Assume that all connected graphs of order n−1 and size n−2 are acyclic. Let
G = (V,E) be a connected graph of order n, and size n − 1. Using summation notation,
the Handshaking property states that∑

v∈V

deg(v) = 2|E|.

This theorem implies G must have a degree-1 vertex u. Otherwise,∑
v∈V

deg(v) ≥ 2n > 2|E| = 2(n− 1).

Thus, removing u from V and removing the edge incident with u from E yields a connected
graphG′ of order n−1 and size n−2. By the inductive assumption, G′ is acyclic. Therefore,
since no cycle can include vertex u, G is also acyclic.

4. Edges added: (a, d, 1), (a, b, 2), (c, e, 4), (a, e, 5) for a total cost of 12.

5. The final union-find tree is shown below.

a

b

d

f c e

6. Edges added: (c, e, 4), (c, d, 5), (a, d, 1), (a, b, 2) for a total cost of 12.

25

7. The heap states are shown below. Note: the next heap is obtained from the previous heap by
i) popping the top vertex u from the heap, followed by ii) performing a succession of priority
reductions for each vertex v in the heap for which the edge (u, v, c) has a cost c that less than
the current priority of v. In the case that two or more vertices have their priorities reduced,
assume the reductions (followed by a percolate-up operation) are performed in alphabetical
order.

e/∞

a/∞

c/∞ d/∞

b/∞

c/4

b/7

d/8

a/5

d/5

b/7 a/5

a/1

b/3

b/2

8. Add a sufficiently large integer J to each edge weight so that the weights will be all nonnegative.
Then perform the algorithm, and subtract J from each mst edge weight.

9. For Kruskal’s algorithm, sort the edges by decreasing edge weight. For Prim’s algorithm, use a
max-heap instead of a min-heap. Verify that these changes can be successfully adopted in each
of the correctness proofs.

10. Edges added in the following order: (a, b, 2), (b, g, 1), (b, c, 2), (g, e, 1), (e, d, 3), (d, f, 1). d(a, a) =
0, d(a, b) = 2, d(a, g) = 3, d(a, c) = 4, d(a, e) = 4, d(a, d) = 7, d(a, f) = 8.

26

11. void print_optimal_path(int i, int parent[])

{

if(i == 0)

print 0

print_optimal_path(parent[i], parent);

print ‘‘ ‘’;

print i;

}

12. Let T be the tree returned by Prim’s Algorithm on input G = (V,E), and assume that
e1, e2, . . . , en−1 are the edges of T in the order in which they were added. T is a spanning
tree (why?), and we must prove it is an mst. Let Topt be an mst for G that contains edges
e1, . . . , ek−1, but does not contain ek, for some 1 ≤ k ≤ n− 1. We show how to transformTopt
into an mst Topt2 that contains e1, . . . , ek.

Let Tk−1 denote the tree that consists of edges e1, . . . , ek−1; in other words, the tree that has
been constructed after stage k − 1 of Prim’s algorithm. Consider the result of adding ek to
Topt to yield the new graph Topt + ek. Then, since Topt + ek is connected and has n edges,
Topt + ek is not a tree, and thus must have a cycle C containing ek. Now since ek is selected at
stage k of the algorithm, ek must be incident with exactly one vertex of Tk−1. Hence, cycle C
must enter Tk−1 via ek, and exit Tk−1 via some other edge e that is not in Tk−1, but is incident
with exactly one vertex of Tk−1. Thus, e was a candidate to be chosen at stage k, but was
passed over in favor of ek. Hence, wek ≤ we.

Now define Topt2 to be the tree Topt+ek−e. Then Topt2 has n−1 edges and remains connected,
since any path in Topt that traverses e can alternately traverse through the remaining edges of
C, which are still in Topt2. Thus, Topt2 is a tree and it is an mst since e was replaced with
ek which does not exceed e in weight. Notice that Topt2 agrees with T in the first k edges
selected for T in Prim’s Algorithm, where as Topt only agrees with T up to the first k − 1
selected edges. Therefore, by repeating the above transformation a finite number of times, we
will eventually construct an mst that is identical with T , proving that T is indeed an mst.

13. Let S = s1, . . . , sm be the set of stations returned by the algorithm (in the order in which they
are visited), and Sopt be an optimal set of stations. Let sk be the first station of S that is not
in Sopt. In other words, Sopt contains stations s1, . . . , sk−1, but not sk. Since F is more than

d units from sk−1 (why ?), there must exits some s ∈ Sopt for which s > sk−1. Let s be such

a station, and for which |s − sk−1| is a minimum. Then we must have sk−1 < s < sk, since
the algorithm chooses sk because it is the furthest away from sk−1 and within d units of sk−1.
Now let Sopt2 = Sopt + sk − s. Notice that Sopt2 contains the optimal number of stations.

Moreover, notice that, when re-fueling at sk instead of s, the next station in Sopt (and hence

in Sopt2) can be reached from sk, since sk is closer to this station than s. Thus, Sopt2 is a
valid set of stations, meaning that it is possible to re-fuel at these stations without running out
of fuel. By repeating the above argument we are eventually led to an optimal set of stations
that contain all the stations of S. Therefore, S is an optimal set of stations, and the algorithm
is correct.

14. Assume each task t has a positive duration; i.e., f(t) − s(t) > 0. Let t1, . . . , tn be the tasks
selected by TSA, where the tasks are in the order in which they were selected (i.e. increasing

27

start times). Let Topt be a maximum set of non-overlapping tasks. Let k be the least integer
for which tk ̸∈ Topt. Thus t1, . . . , tk−1 ∈ Topt.

Claim: t1, . . . , tk−1 are the only tasks in Topt that start at or before tk−1. Suppose, by way
of contradiction, that there is a task t in Topt that starts at or before tk−1, and t ̸= ti,
i = 1, . . . , k − 1. Since t does not overlap with any of these ti, either t is executed before t1
starts, in between two tasks ti and ti+1, where 1 ≤ i < k − 1. In the former case, TSA would
have selected t instead of t1 since f(t) < f(t1). In the latter case, TSA would have selected t
instead of ti+1, since both start after ti finishes, but f(t) < f(ti+1). This proves the claim.

Hence, the first k − 1 tasks (in order of start times) in Topt are identical to the first k − 1
tasks selected by TSA. Now let t be the k th task in Topt. Since TSA selected tk instead of t

as the k th task to add to the output set, it follows that f(tk) ≤ f(t). Moreover, since both
tasks begin after tk−1 finishes, the set Topt2 − t+ tk is a non-overlapping set of tasks (since tk
finishes before t, and starts after tk−1 finishes) with the same size as Topt. Hence, Topt2 is also
optimal, and agrees with the TSA output in the first k tasks.

By repeating the above argument we are eventually led to an optimal set of tasks whose first n
tasks coincide with those returned by TSA. Moreover, this optimal set could not contain any
other tasks. For example, if it contained an additional task t, then t must start after tn finishes.
But then the algorithm would have added t (or an alternate task that started after the finish of
tn) to the output, and would have produced an output of size at least n+1. Therefore, there is
an optimal set of tasks that is equal to the output set of TSA, meaning that TSA is a correct
algorithm.

15. Let (g1, w1), . . . , (gn, wn) represent the ordering of the goods by FKA, where each wi represents
the amount of gi that was added to the knapsack by FKA. Let Copt be an optimal container,

and let (gk, wk) be the first pair in the ordering for which wk is not the amount of gk that
appears in Copt. Thus, we know that Copt has exactly wi units of gi, for all i = 1, . . . , k −
1. As for gk, we must have wk > 0. Otherwise, FKA filled the knapsack to capacity with
(g1, w1), . . . , (gk−1, wk−1), which means that Copt could only assign 0 units of capacity for gk,
which implies Copt agrees with FKA up to k, a contradiction. Moreover, it must be the case
that Copt allocates weight w for gk, where w < wk. This is true since FKA either included all
of gk in the knapsack, or enough of gk to fill the knapsack. Thus, Copt can allocate no more of
gk than that which was allocated by FKA. Now consider the difference wk − w. This capacity
must be filled in Copt by other goods, since Copt is an optimal container. Without loss of
generality, assume that there is a single good gl, l > k, for which Copt allocates at least wk−w

units for gl. Then the total profit being earned by these weight units is d(gl)(wk − w). But,
since l > k, d(gl) ≤ d(gk), which implies

d(gl)(wk − w) ≤ d(gk)(wk − w).

Now let Copt2 be the container that is identical with Copt, but with wk−w units of gl replaced
with wk − w units of gk. Then the above inequality implies that Copt2 must also be optimal,
and agrees with the FKA container on the amount of each of the first k placed goods.

By repeating the above argument, we are eventually led to an optimal container that agrees
with the FKA container on the amount to be placed for each of the n goods. In other words,
FKA produces an optimal container.

16. Let (a1, t1), . . . , (am, tm) represent the tasks that were selected by the algorithm for scheduling,
where ai is the task, and ti is the time that it is scheduled to be completed, i = 1, . . . ,m.

28

Moreover, assume that these tasks are ordered in the same order for which they appear in the
sorted order. Let Sopt be an optimal schedule which also consists of task-schedule-time pairs.

Let k be the first integer for which (a1, t1), . . . , (ak−1, tk−1) are in Sopt, but (ak, tk) ̸∈ Sopt.
There are two cases to consider: either ak does not appear in Sopt, or it does appear, but with
a different schedule time.

First assume ak does not appear in Sopt. Let a be a task that is scheduled in Sopt that
is different from ai, i = 1, . . . , k − 1, and is scheduled at time dk. We now a must exist,
since otherwise (ak, dk) could be added to Sopt to obtain a more profitable schedule. Now if

p(a) > p(ak), then a comes before ak in the sorted order. But since a ̸= ai, for all i = 1, . . . , k−1,
it follows that it is impossible to schedule a together with each of a1, . . . , ak−1 (otherwise the
algorithm would have done so), which is a contradiction, since Sopt schedules all of these tasks,
and schedules a1, . . . , ak−1 at the same times that the algorithm does. Hence, we must have
p(a) ≤ p(ak). Now define Sopt2 = Sopt− (a, dk)+ (ak, dk). Then Sopt2 is an optimal schedule
that agrees with the algorithm schedule up to the first k tasks.

Now assume ak appears in Sopt, but is scheduled at a different time t ̸= tk. First notice that
t cannot exceed tk, since the algorithm chooses the first unoccupied time that is closest to a
task’s deadline. Thus, every time between tk + 1 and dk (inclusive) must already be occupied
by a task from a1, . . . , ak−1,

and hence these times are not available for ak in Sopt. Thus, t < tk. Now if tk is unused by

Sopt, then let Sopt2 = Sopt − (ak, t) + (ak, tk). On the other hand, if tk is used by some task
a, then let

Sopt2 = Sopt − (ak, t)− (a, tk) + (ak, tk) + (a, t).

In both cases Sopt2 is an optimal schedule that agrees with the algorithm schedule up to the
first k tasks.

By repeating the above argument, we are eventually led to an optimal schedule that entirely
agrees with the algorithm schedule. In other words, the algorithm produces an optimal schedule.

29

