CECS 528, Learning Outcome Assessment 5 (Version b), March 3rd, Spring 2023, Dr. Ebert

NO NOTES, BOOKS, ELECTRONIC DEVICES, OR INTERPERSONAL COMMU-NICATION ALLOWED. Submit solutions to at most 2 LO problems on separate sheets of paper.

Problems

LO1. Determine the growth of the function

$$S(n) = \log 1 + 2\log 2 + \dots + n\log n.$$

Show all work.

LO2. The tree below shows the state of the binary min-heap at the beginning of some round of Dijkstra's algorithm, applied to some weighted graph G. If G has directed edges

(c, e, 7), (c, f, 3), (c, g, 6), (c, p, 2), (f, c, 2),

then draw a plausible state of the heap at the end of the round.

- LO3. Answer the following with regards to a correctness-proof outline for the Task Selection algorithm.
 - (a) Let $S = t_1, \ldots, t_m$ be the set of non-overlapping tasks selected by TSA and sorted by finish time, i.e. $f(t_i) < f(t_{i+1})$ for all $i = 1, \ldots, m-1$. Let S_{opt} be an optimal set of tasks and assume that, for some $k \ge 1, t_1, \ldots, t_k \in S_{\text{opt}}$, but $t_{k+1} \notin S_{\text{opt}}$. Let $t' \in S_{\text{opt}}$ be the earliest task that follows t_k . What can we say about the relationship between $f(t_{k+1})$ and f(t')? Justify your answer.
 - (b) Suppose we have established the existence of an optimal set of tasks S_{opt} such that $S \subseteq S_{\text{opt}}$. To finish the proof, we must show that there cannot be a task in S_{opt} that is not in S. As a step in this direction, explain why there can be no task $t \in S_{\text{opt}}$ that lies between t_i and t_{i+1} , where is any value from $\{1, \ldots, n-1\}$.

LO4. Use the substitution method to prove that, if T(n) satisfies

$$T(n) = 4T(n/2) + n^2,$$

Then $T(n) = O(n^2 \log n)$. Hint: remember to state the inductive assumption.

LO5. Recall that the Maximum Subsequence Sum (MSS) problem (Exercise 34) admits a divideand-conquer algorithm that, on input integer array a, requires computing the maximum of $MSS_{left}(a)$, $MSS_{right}(a)$, and $MSS_{mid}(a)$. If the array is

$$a = 4, -2, 5, -8, 4, 6, -5, 3, -8, 7$$

then

- (a) Provide $MSS_{left}(a)$, $MSS_{right}(a)$. Hint: no need to show work!
- (b) Provide the two arrays of sums, Sum_{left} and $\text{Sum}_{\text{right}}$ that are used to compute $\text{MSS}_{\text{mid}}(a)$. Explain how to compute $\text{MSS}_{\text{mid}}(a)$ from these two arrays.