
CECS 528, Exam 2 Version a Solutions, March 24th, Spring 2023, Dr.
Ebert

Rules for Completing the Problems

NO NOTES, BOOKS, ELECTRONIC DEVICES, OR INTERPERSONAL COMMU-
NICATION allowed when solving these problems. Make sure all these items are put
away BEFORE looking at the problems. FAILURE TO ABIDE BY THESE RULES
MAY RESULT IN A FINAL COURSE GRADE OF F.

Directions

Choose up to six problems to solve. Clearly mark each problem you want graded by placing an ‘X’
or check mark in the appropriate box. If you don’t mark any problems or mark more than
six, then we will record grades for the six attempted problems that received the fewest
points.

Problem 1 2 3 4 5 6 LO1 LO2 LO3 LO4

Grade?

Result

Your Full Name:

Class ID Number:

1



1. Note: correctly solving parts a and b for this problem counts for passing LO5. Recall that the
Minimum Positive Subsequence Sum (MPSS) problem admits a divide-and-conquer algorithm
that, on input integer array a, requires computing the mpss of any subarray of a that contains
both a[n/2− 1] and a[n/2] (the end of aleft and the beginning of aright). For

a = −28, 12,−19, 33,−14,−29, 39, 42,−18, 21

a. Provide the two sorted arrays b and c from which the minimum positive sum b[i] + c[j]
represents the desired mpss, for some i in the index range of b and some j within the index
range of c. (8 pts)

Solution.

Left sums: -14, 19, 0, 12, 19

Right sums: -29, 10, 52, 34, 55

b = −16,−14, 0, 12, 19.

c = −29, 10, 34, 52, 55.

b. For the b and c in part a, demonstrate how the minimum positive sum b[i] + c[j] may be
computed in O(n) steps. (10 pts)

Solution.
i j b[i] + c[j] Action
0 4 39 j −−
0 3 36 j −−
0 2 18 j −−
0 1 -6 i+ +
1 1 -4 i+ +
2 1 10 j −−
2 0 -29 i+ +
3 0 -17 i+ +
4 0 -10 None

MPSS Middle equals 10.

c. State the running time T (n) for the above MPSS divide-and-conquer algorithm. (7 pts)

Solution. T (n) satisfies T (n) = 2T (n/2) + n log n. Master Theorem does not apply, but
using the Master Equation one gets T (n) = Θ(n log2 n).

2



2. Recall that the find statistic algorithm makes use of Quicksort’s partitioning algorithm and
uses a pivot that is guaranteed to have at least

3(b1
2
dn

5
ec − 2) ≥ 3(

1

2
· n

5
− 3) =

3n

10
− 9.

members of a on both its left and right sides. Note: correctly solving parts a and b for this
problem counts for passing LO6.

a. Rewrite both the inequality and equality with updated constants, assuming that the al-
gorithm now uses groups of 3 instead of groups of 5. (10 pts)

Solution.

2(b1
2
dn

3
ec − 2) ≥ 2(

1

2
· n

3
− 3) =

n

3
− 6.

b. Assuming groups of 3 instead of groups of 5, provide a new worst-case divide-and-conquer
recurrence for the running time T (n) of the find statistic algorithm, and show that
T (n) is no longer worst-case linear. (15 pts)

Solution. The worst-case recurrence is now T (n) = T (n/3) + T (2n/3 + 6) ≥ T (n/3) +
T (2n/3) = Ω(n log n) (verify using the Substitution method).

3



3. Answer the following. Note: correctly solving this problem counts for passing LO7.

a. Provide the dynamic-programming recurrence for computing mc(u, v) the cost of the
maximum-cost path from vertex u to vertex v in a directed acyclic graph (DAG) G =
(V,E, c), where c(e) gives the cost of edge e, for each e ∈ E. (10 pts)

Solution.

mc(u, v) =


0 if u = v
∞ if u 6= v and deg−(u) = 0
max(u,w)∈E(c(u,w) + mc(w, v)) otherwise

b. Draw the vertices of the following DAG G in a linear left-to-right manner so that the
vertices are topologically sorted, meaning, if (u, v) is an edge of G, then u appears to the
left of v. The vertices of G are a-h, while the weighted edges of G are

(a, b, 1), (a, e, 2), (a, f, 3), (b, c, 3), (b, g, 2), (c, d, 4), (c, g, 2), (c, h, 5), (d, h, 2), (e, b, 3), (e, f, 4),

(f, b, 4), (f, c, 3), (f, g, 1), (g, d, 5), (g, h, 2).

(5 pts)

Solution.

c. Starting with u = h, and working backwards (from right to left), use the recurrence from
part a to compute each of mc(u, h), where the ultimate goal is to compute mc(a, h). (10
pts)

i. mc(h, h) = 0

ii. mc(d, h) = 2 + mc(h, h) = 2;

iii. mc(g, h) = max(5 + mc(d, h), 2 + mc(h, h)) = max(5 + 2, 2) = 7

iv. mc(c, h) = max(4 + mc(d, h), 2 + mc(g, h), 5 + mc(h, h)) = 9.

v. mc(b, h) = max(3 + mc(c, h), 2 + mc(g, h)) = 12.

vi. mc(f, h) = max(1 + mc(g, h), 4 + mc(b, h), 3 + mc(c, h)) = 16.

vii. mc(e, h) = max(3 + mc(b, h), 4 + mc(f, h)) = 20.

viii. mc(a, h) = max(2 + mc(e, h), 1 + mc(b, h)) = 22.

4



4. Given an array of n strictly increasing integers, describe an optimal (with respect to big-O
running-time) algorithm for determining whether or not a has a fixed point, meaning the
existence of an index i ∈ {0, . . . , n − 1} for which a[i] = i. Please do not use pseudocode.
Rather, number each step of your algorithm and clearly explain each step. Before beginning
the first step clearly define all variables used by the algorithm and indicate their initial val-
ues. Provide the running time of your algorithm and justify your answer. Suboptimal and/or
incompletely/vaguely written algorithms will be awarded 0 points. (25 pts)

Solution.

a. Initialize variables l = 0 and u = n− 1.

b. If a has a size of of 3 or less, then check, one by one, if some array member is a fixed point.
If yes, then return 1. Otherwise, return false.

c. Set variable m = (l + u)/2, and consider a[m]. If a[m] = m, then return 1. Else if
a[m] > m, then a can only have a fixed point if it occurs at index i < m. In this case
assign r = m− 1 and go to Step 2. Finally, if a[m] < m, a can only have a fixed point if
it occurs at index i > m. In this case assign l = m+ 1 and go to Step 2.

Running time is T (n) = O(log n) since T (n) satisfies T (n) ≤ T (n/2) + 1.

5



5. Consider the following algorithm that finds multiple statistics for the input array a, where the
different k values are provided in a set K.

Name: find statistics

Inputs:

Array a of n integers.

Set K = {k1, . . . , kj} of statistic indices, where each lower ≤ ki ≤ upper.

Indices lower and upper, where 0 ≤ lower ≤ upper < n.

Output: subset S ⊆ a consisting of the j desired statistics.

If K = ∅, then Return ∅.
If lower = upper, then Return {a[lower]}.
If K = {k}, then Return {find statistic(a, k, lower, upper)}. //Use find statistic

from lecture

index = index of median(a,lower,upper). //This takes linear time

median = a[index].

S = ∅. //Initialize the set of statistics to return.

If index ∈ K, then S = S ∪ {median}. //The median is one of the sought statistics

Kleft = K ∩ {lower, . . . , index− 1}.
S = S ∪ find statistics(a,Kleft, lower, index-1).

Kright = K ∩ {index + 1, . . . , upper}.

S = S ∪ find statistics(a,Kright, index + 1, upper).

Return S.

Suppose for some large n we run find statistics on inputs K = { n
blognc ,

2n
blognc , . . . ,

(blognc−1)n
blognc }

with lower = 0 and upper = n − 1. Determine the big-Θ running time on this input. Defend
your answer. Hint: at what level of the recursion does the algorithm revert to the orginal
find statistic algorithm from lecture?

Solution.

The algorithm’s recurrence obeys T (n) = 2T (n/2)+n until the array size becomes small enough
to where there is at most one statistic index in the array. Since each statistic index is a distance
of n/ log n from either of its neighbors, the above recurrence becomes invalid at depth d where
n/2d < n/ log n which implies d > log(log n). Thus the total work of the algorithm in the first
d−1 levels of the recursion tree equals Θ(n log(log n)). In addition, the original find statistic

algorithm must be run log n− 1 times on inputs of size n/ log n for an additional running time
of O(n). Therefore, T (n) = Θ(n log(log n)). (25 pts)

6



6. The Subset Sum decision problem consists of a sequence of integers S = x1, . . . , xn and target
integer t. The problem is to decide if there is a (possibly non-contiguous) subsequence A of S
whose members sum to t. For example, Subset Sum instance S = 3, 7, 13, 19, 22, 26, 35, 38, 41
and t = 102 is a positive instance since A = 3, 7, 13, 38, 41 is a subsequence of S and

3 + 7 + 13 + 38 + 41 = 102.

a. Provide a dynamic-programming recurrence for solving the Subset Sum problem. Do this
by defining the predicate function (i.e. one that returns either 0 or 1) has sum(i, c), for
appropriate variables i and c which you should define. (15 pts)

b. Apply your recurrence to S = 2, 4, 5, 6, 9 and t = 10. Provide the matrix of subproblem
solutions. And circle the numbers that are used to make up the sum. (10 pts)

7



LO1. Which function grows faster 2
√
n or (log n)

3√n? Defend your answer.

LO2. Recall the use of the disjoint-set data structure for the purpose of improving the running time
of the UTS algorithm. For the set of tasks

Task a b c d e f
Deadline 1 2 2 3 3 0
Profit 60 50 40 30 20 10

For each task τ , show the M-Tree forest after τ has been inserted (or at least has attempted to
be inserted in case the scheduling array is full). Notice that the earliest deadline is 0, meaning
that the earliest slot in the schedule array has index 0. Hint: to receive credit, your solution
should show six different snapshots of the M-Tree forest.

8



LO3. Answer the following with regards to a correctness-proof outline for Dijkstra’s algorithm. Note:
correctly solvng this problem counts for passing LO3.

(a) Complete the following sentence. “In relation to Dijkstra’s algorithm, an i-neighboring
path from source s to a vertex v that is external to DDTi is . . .”

(b) Complete the following sentence. “Furthermore, the i-neighboring distance di(s, v)
from source s to v is defined as . . .”

(c) Complete the following sentence. “The greedy choice made by Dijkstra’s algorithm at
round i+ 1 is to select the external vertex v∗ which has . . .”

(d) Complete the following sentence. “If P is any path from s to v∗ (from part c), cost(P ) ≥
di(s, v

∗) since any path P has an i-neighboring subpath, and . . .”

LO4. Use the substitution method to prove that, if T (n) = T (n/3) + T (2n/3) + n, then T (n) =
Ω(n log n). Remember to clearly state the inductive assumption.

9


