
CECS 528, Exam 2, Spring 2024, Dr. Ebert

Directions: Solve AT MOST SIX problems. Closed Notes but you may use a non-
programmable scientific calculator

1 Unit 2 LO Problems (25 pts each)

LO4. Answer the following.

(a) Provide a definition for both DFTn and DFT−1
n . How is each one used to solve the problem

of multiplying two polynomials? Explain. (15 pts)

(b) Compute DFT−1
4 (5, 7,−7, 0) using the IFFT algorithm. Show the solution to each of the

seven subproblem instances and, for each one, clearly represent it using DFT−1 notation
and apply the formula for computing it. Show all work. (10 pts)

LO5. For the weighted graph with edges

(a, e, 6), (b, d, 3), (c, d, 2), (c, f, 5), (d, e, 1), (d, f, 4),

Show how the forest of M-Trees changes when processing each edge in Kruskal’s sorted list of
edges. When unioning two trees, use the convention that the root of the union is the root which
has the lower alphabetical order. For example, if two trees, one with root a, the other with
root b, are to be unioned, then the unioned tree should have root a. (25 pts)

LO6. Recall that the greedy algorithm to the Fuel Reloading problem chooses a sequence S =
s1, . . . , sn of stations for which s1 < · · · < sn < d, where si+1 is the furthest station from
si that can be reached from si on a full tank of fuel, and d is the final destination, and can be
reached from sn. Let Sopt be a minimal set of stations, and let k be the least integer for which
sk ̸∈ Sopt. To prove correctness, answer the following questions.

(a) Let s ∈ Sopt be the station in Sopt that comes after sk−1, and is closest to sk−1. Why

must such an s exist? Hint: what contradiction arises if such s did not exist? (10 pts)

(b) Assuming that different stations have different positions, why must it be the case that
s < sk? Hint: what contradiction arises in case s > sk? (10 pts)

(c) Define Ŝopt as Sopt − s + sk. From the algorithm, we know that sk can be reached
from sk−1, and, since sk > s, it is still possible to reach stations in Sopt that follow s.
Continuing in this manner, we eventually construct an optimal set of stations Sopt for
which S ⊆ Sopt. Why does this imply that S = Sopt? Hint: what contradiction arises if

S were a proper subset of Sopt? (5 pts)

1



LO7. Answer/Solve the following questions/problems.

(a) The dynamic-programming algorithm that solves the Runaway Traveling Salesperson

optimization problem (Exercise 30 from the Dynamic Programming Lecture) defines a
recurrence for the function mc(i, A). In words, what does mc(i, A) equal? Hint: do not
write the recurrence (see Part b). Note: we call it “Runaway TSP” because the salesperson
does not return to home after visiting each city. (5 pts)

(b) Provide the dynamic-programming recurrence for mc(i, A). (10 pts)

(c) Apply the recurrence from Part b to the graph below. Show all the necessary computations.
Provide the least cost path and give its total cost. (10 pts)

1 2

3 4

46

26

38

20

15

24

2 Advanced Problems

A1. Compute the 8th roots of unity and verify that their squares yield the 4th roots of unity. Hint:
cos(π

4
) =

√
2
2
. (25 pts)

A2. Consider the three-coin denomination set S = {1, 10, 25}. Let m(c) denote the minimum
number of coins that are needed to return c cents in change using set S.

(a) Provide a dynamic-programming recurrence for computing m(c). Remember to include
the base case(s). (20 pts)

(b) Apply the recurence from part a to the problem of determining the minimum number of
coins needed for c = 33 cents. Include a dynamic-programming array that has solutions
to every subproblem of 33 cents or less. (10 pts)

A3. Provide a recursive implementation of the following function.

Boolean uses_item(int p[][], int n, int M, int i);

which takes as inputs the completed 0-1 knapsack dynamic-programming solution matrix p,
the number of items n, the knapsack capacity M , and an item index 1 ≤ i ≤ n, and returns 1
iff, item i was placed in the optimal knapsack (in accordance with matrix p). (25 pts)

A4. Answer the following.

2



(a) Let G = (V,E, c) be a positive-weighted graph with integer vertices and P = i, . . . , j, . . . , k
is a least-cost simple path from i to k, where i < j < k. Prove that P1 and P2 must both be
least-cost paths, where P1 = i, . . . , j, P2 = j, . . . , k, and P = P1 ◦ P2 is the concatenation
of P1 with P2. Hint: use a proof by contradiction. (10 pts)

(b) Give an example of a maximum-cost simple path P = i, . . . , j, . . . , k from i to k, but for
which neither P1 nor P2 are maximum-cost paths, where P1 = i, . . . , j, P2 = j, . . . , k, and
P = P1 ◦ P2 is the concatenation of P1 with P2. Hint: use a directed graph. (15 pts)

3 Unit 1 LO Problems (0 pts each)

LO1. Solve the following.

a. Compute 280 + 370 mod 5. Show all work.

b. In the Strassen-Solovay test, is a = 4 a witness or accomplice for n = 21? Show work in
computing both the left and right sides of the mod-21 congruence.

LO2. Solve each of the following problems.

a. Use the Master Theorem to determine the growth of T (n) if it satisfies the recurrence
T (n) = 4T (n/2) + nlog2 5 log3 n.

b. Use the substitution method to prove that, if T (n) satisfies

T (n) = 4T (n/2) + 3n,

Then T (n) = Ω(n2 log n). (15 pts)

LO3. Solve the following problems.

a. Recall the Randomized Find-Statistic algorithm. For an in input array a of size 128,
and k = 18, suppose a pivot is randomly selected from the indices 0-127. What is the
probability that, after using this pivot for the partitioning step, the next array to consider
will have a size that is no greater than 96? Explain and show work. How many random
pivots would we expect would have to be generated before finding one that that reduces
the array to the desired size (of 96 or fewer elements). Explain.

b. Recall that the Minimum Positive Subsequence Sum (MPSS) problem admits a divide-
and-conquer algorithm that, on input integer array a, requires computing the mpss of any
subarray of a that contains both a[n/2− 1] and a[n/2] (the end of aleft and the beginning
of aright). For

a = 46,−37, 23,−47, 11,−36, 46,−40, 14,−29

provide the two sorted arrays a = LeftSums and b = RightSums from which the minimum
positive sum a[i] + b[j] represents the desired mpss (for the middle), where i in the index
range of a and j is within the index range of b. Also, demonstrate how the minimum
positive sum a[i] + b[j] may be computed via the movement of left and right markers.

3


