
Turing and Mapping Reducibility

Last Updated: April 15th, 2024

1 Turing Reducibility

A common technique in everyday problem solving is to leverage the solution to one problem in order
to solve another. For example, consider our friend Sam who must solve the problem of earning enough
money to help support his way through college. One possible solution that Sam has considered is to
work part-time delivering food for DoorDash. This solution would leverage the fact that he’s already
solved the problem of driving a vehicle from any one city location to another. Sam will likely have to
solve tens of transport problems during a single work shift. Furthermore, the solution to the problem
of successful navigation during a single instance of the food-transport problem can in be reduced to
the problem of querying a global positioning system about one’s position on earth at any moment
during the trip.

In computer science, when an algorithm solves an instance of problem A by making one or more
queries about the solutions to instances of problem B, then we say that A is Turing reducible to B,
named after the British mathematician Alan Turing (1912-1954) who provided one of the earliest
known theoretical models of computation that is functionally equivalent to the computers we use
today (so long as our computers are idealized as having an infinite supply of memory). In this lecture
we take a closer look at Turing reducibility and how it can be used as a means for devising algorithms.

1

Turing reducibility represents an important tool for desigining an algorithm to solve some problem
A by leveraging an existing algorithm that solves another problem B by calling B’s algorithm one
or more times for different instances of B in order to solve a single instance of A.

Example 1.1. Consider the problem of multiplying two positive numbers, say 5 and 3. Marcia is
still learning the multiplication table, but she performs well in addition, and also knows that 5 × 3
means (5 + 5) + 5. Thus, she first solves the addition problem 5 + 5 and gets the answer 10. She
then solves the final addition problem, 10 + 5 to obtain the answer of 15.

The following function returns the product of its two inputs by making calls to an add function that
returns the sum of its two inputs. It essentially generalizes Marcia’s solving method.

unsigned int multiply(unsigned int a, unsigned int b)

{

int sum = 0;

int i;

for(i=1; i <= b; i = add(i,1))

sum = add(sum,a);

return sum;

}

2

In Example 1.1, Marcia reduced the Multiply problem to the Add problem. In other words, she
devised an algorithm for multiplying two numbers that relies on solving one or more addition
problems. Moreover, whenever the answer to an instance of Add is being sought to help solve an
instance of Multiply, then we say that Multiply is making a query to the Add-oracle, i.e., an
entity that is capable of providing solutions to instances of Add. The answer provided by the oracle
is called a query answer. Note that the algorithm that is making queries to an oracle does not
necessarily need to know how the oracle is providing its answers. In case of the multiply function
in Example 1.1, the function just assumes that each add query will be correctly answered with no
concern about how the answer is obtained. In fact, the oracle may provide answers to instances of a
problem for which it is impossible to devise an algorithm for solving it.

Definition 1.2. Problem A is Turing reducible to problem B, denoted A ≤T B, iff there is some
algorithm that can solve any instance x of A, and is allowed to make zero or more queries to a
B-oracle, i.e. an oracle that provides solutions to instances of B.

Definition 1.3. If A ≤T B via an algorithm whose running time O(nk), for some k > 0, then A

is said to be polynomial-time Turing reducible to B, denoted A ≤pT B. Note: this definition
assumes that each B-query is answered in one step.

Interesting fact: the term oracle comes from ancient Greece, where the “oracle at Delphi” meant a
high priestess who resided in a sanctuary located on Mt. Parnassus, and gave predictions and advice
to both statesmen and citizens.

3

2 Mapping Reducibility

We now consider a special kind of Turing reduction from problem A to problem B for which given
problem instance x of A, i) exactly one query is allowed to the B-oracle, and ii) the answer provided by
the B-oracle equals the solution to x, Because of this we may assume that there exists a computable
function f : A → B that represents the query to the B-oracle. In other words, given instance x of
A, f(x) represents the single query to B whose answer/solution is the answer/solution for x.

Definition 2.1. Problem A is mapping reducible to problem B, written A ≤m B, iff there exists
a computable function f : A → B for which the solution to problem instance x of A is equal to the
solution to problem instance f(x) of B.

Notes:

1. Similar to Turing reducibility, if we insist that the algorithm for computing f requires at most
a polynomial number of steps with respect to the size of an instance x, then we say A is
polynomial-time mapping reducible to B and write A ≤p

m B.

2. The term map is a synonym for function.

3. A special case of a mapping reduction occurs when A and B are decision problems in this case
f has the property that x is a positive instance of A iff f(x) is a positive instance of B. In other
words, a positive (respectively, negative) instance of A must map to a positive (respectively,
negative) instance of B.

4

3 Basic Examples

Example 3.1. We begin with a toy example by considering the two decision problems Even and Odd

where an instance of either problem is an integer n. Moreover, for Even the problem is to decide if
n is even. Problem Odd is similarly defined. Then we have Even ≤m Odd via function f(n) = n + 1.
This is true since n is even if and only if f(n) = n + 1 is odd. Thus, the answer to n equals the
answer to f(n). Notice that f also provides a reduction from Odd to Even.

5

Administrator
Pencil

a

b

c

d

e

f

g

h

i

Figure 1: I = {a, b, d, f, h} is an independent set for the above graph

a

b

c

d

e

f

g

h

i

Figure 2: The complement graph G for the graph G shown in Figure 1

Example 3.2. Recall the Max Clique optimization problem involves determing the size of the largest
clique in some graph. A related problem is the Max Independent Set (MIS) optimization problem
for which a problem instance is a simple graph G = (V,E) and the problem is to determine the size
of the largest subset I ⊆ V of vertices such that, for every u ∈ I and v ∈ I, (u, v) ̸∈ E. In other
words, every pair of vertices that both belong to I must be non-adjacent. Figure 1 shows a graph
whose largest independent set is I = {a, b, d, f, h}.

We now provide a map reduction from MIS to Max Clique. Given a simple graph G = (V,E), our
reduction makes use of the complement of G, denoted G, which is defined as G = (V,E), where,
for any two vertices u, v ∈ V , (u, v) ∈ E iff (u, v) ̸∈ E. In other words, G and its complement G
have the same vertex set, but the edges of G are exactly those edges that are not edges of G, and
vice versa. For example, the Graph is Figure 2 shows the complement of the graph G in Figure 1.

6

Administrator
Pencil

Notice that the independent set I = {a, b, d, f, h} for G now represents a 5-clique in G. In fact, this
is true for any independent set I for G: I is an independent set for G iff I is a clique for G. Thus,
we may provide a map reduction f : MIS → Max Clique that is defined by f(G) = G. Indeed k is
the size of the largest independent set of G iff it is the size of the largest clique of G.

In the previous example, it is important to note that the same map f : Max Clique → MIS may
be used to reduce Max Clique to MIS. This because both problems have the same domain (simple
graphs) and C is a maximum clique for G iff C is a maximum independent for f(G) = G.

7

4 Embeddings

Definition 4.1. An embedding reduction is a kind of mapping reduction for which a problem A
is map reduced to problem B, where A is a special case of B.

As an example, consider a vehicle that has an air-conditioning system that includes the ability to
cool and heat different parts of the vehicle, as well as control the flow of air entering and leaving the
vehicle. Recall our friend Sam from the Turing Reducibility lecture. Sam and his friends drove to the
Mohave desert where they encountered extreme heat, lots of wind, and some very dusty roads. While
driving, they reduced the problem of staying cool and breathing clean air to setting the vehicle’s air-
conditioner to “cool” and allowing no outside air to enter the vehicle. In other words, the general
air-conditioning system served the special purpose of cooling and maintaining air cleanliness.

Definition 4.2. The Subset Sum (SS) decision problem is a pair (S, t), where S is a set of nonnegative
integers, and t is a nonnegative integer. The problem is to decide if there is a subset A ⊆ S whose
members sum to t, i.e., a subset A for which ∑

a∈A

a = t.

Example 4.3. Subset Sum instance (S = {3, 7, 13, 19, 22, 26, 35, 38, 41}, t = 102) is a positive
instance of SS since A = {3, 7, 13, 38, 41} ⊆ S and

3 + 7 + 13 + 38 + 41 = 102.

8

Administrator
Pencil

Definition 4.4. An instance of decision problem Set Partition (SP) consists of a set S of positive
integers, and the problem is to decide if there are subsets A,B ⊆ S for which

1. A ∩B = ∅,

2. A ∪B = S, and

3. ∑
a∈A

a =
∑
b∈B

b.

In other words, the members of A must sum to the same value as the members of B.

Example 4.5. Show that Set Partition instance

S = {3, 14, 19, 26, 35, 37, 43, 49, 52}

is a positive instance of SP.

9

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

A few moments of thought should convince you that SP is a special case of SS. Indeed given instance
S of SP, if we let M denote the sum of all members of S, then we essentially are seeking a subset A
whose members sum to M/2 since, if such A can be found, then by setting B = S − A, we have all
three conditions met (check this!). Therefore, we may reduce SP to SS via the map

f(S) = (S, t = M/2), (1)

where M is defined as above.

Just as Sam and his friends don’t care about the heating features of the air-conditioning, when solving
an instance of Set Partition via Subset Sum, we don’t care that Subset Sum can solve a wider
variety of problems involving t values that may not have any relationship with S.

10

Administrator
Pencil

Example 4.6. Given the instance S = {4, 8, 17, 25, 34, 46, 53, 59} of Set Partition, provide the
instance of SS to which it reduces via the mapping defined in equation 1.

Solution.

11

Administrator
Pencil

Definition 4.7. An instance of the LPath decision problem is a pair (G, k), where G = (V,E) is a
simple graph, and k ≥ 0 is a nonnegative integer. The problem is to decide if G has a simple path
of length k, i.e. a path that traverses k edges and visits exactly k + 1 different vertices.

Example 4.8. The following graph, along with k = 4, shows a positive instance of LPath.

a b c d

e f g h

12

Administrator
Pencil

Definition 4.9. An instance of the Hamilton Path (HP) decision problem consists of a simple graph
G = (V,E) and the problem is to decide if G has a Hamilton path, namely a path that visits every
vertex in G exactly once.

Example 4.10. The following graph represents a positive instance of HP, with the Hamilton Path
shown in red.

a b c d

e f g h

13

Administrator
Pencil

Once again, it is hopefully evident that HP is a special case of LPath. To see this, note that a simple
graph has a Hamilton path iff it has a simple path of length n − 1 = |V | − 1. Therefore, we may
reduce HP to LPath via the map

f(G) = (G, |V | − 1).

14

Administrator
Pencil

5 Contractions

As the examples in the previous section suggest, devising an embedding reduction from problem A
only requires knowledge of a problem B that is more general than A and includes A as a special
case. On the other hand, a contraction reduction is a mapping reduction for which problem B is
the special case of problem A. Defining a contraction usually involves some insight and imagination.
Moreover, a contraction reduction demonstrates actual computing progress in the sense that a body
A of problem instances gets effectively reduced to a smaller set B which may improve the chances of
efficiently solving A through the lens of B.

Example 5.1. Contractions are quite common in everyday computing. As an example, consider
a legacy compiler C for some programming language L. Over the years L gets extended with the
addition of new programming constructs that improve the ease of programming in L. We’ll call
this extended version Turbo-L. Rather than write a new compiler for Turbo-L, we instead provide
a contraction that is capable of translating any Turbo-L program to an L program, followed by
compiling the L-code with the legacy compiler.

15

Administrator
Pencil

Let’s return to the Subset Sum (SS) and Set Partition (SP) problems defined in Section 4. There
we showed a natural embedding from SP to SS. Now we show a contraction from SS to SP. To see
how the contraction works, consider the set

S = {7, 12, 15, 23, 37, 42, 48}.
The sum of its members is M = 184. Therefore, if (S, t) is an instance of SS with t = 184/2 = 92,
then, by dropping t, this instance naturally maps to SP:

(S, t)→ S,

and (S, t) is positive for SS iff S is positive for SP.

What if t is less than half of M? Then we may not simply drop t, but will also have to modify
S. But how? As an example, suppose that t = 64 < 92. Then (S, t) is a positive instance of SS
via A = {12, 15, 37}. Notice also that the members of the complement B = S − A sums to 120.
Therefore, by adding to S the extra number J = 56, we see that the members of

A ∪ {56} = {12, 15, 37, 56},
also sum to 120 and thus S ′ = S ∪ {56} is a positive instance of SP.

Let’s generalize the example from the last paragraph. Assume that t < M/2. Then we must add the
number J to S for which

t+ J = M − t⇒ J = M − 2t.

Now suppose (S, t) is positive for SS via A ⊆ S. Let A′ = A+ {M − 2t} and B′ = S − A. Then we
have

1. A′ ∩B′ = ∅,

2. A′ ∪B′ = S ′ = S + {M − 2t}, and

3. the members of A′ sum to t+ (M − 2t) = M − t while the members of B′ also sum to M − t.

Therefore, S ′ = S ∪ {M − 2t} is a positive instance of SP.

We now show that the converse is also true: if S ′ = S ∪ {M − 2t} is positive for SP, then there are
subsets A′ and B′ of S ′ for which

1. A′ ∩B′ = ∅,

2. A′ ∪B′ = S ′,

3. (M − 2t) ∈ A′, and

4. the members of A = A′ − {M − 2t} sum to

1/2(M + (M − 2t))− (M − 2t) = (M − t)− (M − 2t) = t.

And since the members of A = A′ − {M − 2t} are all members of S, we see that (S, t) is positive for
SS.

16

Administrator
Pencil

Administrator
Pencil

Example 5.2. Derive the formula for J in case t > M/2.

17

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Example 5.3. Use the above reduction to map the following instances of Subset Sum to Set

Partition.

1. ({7, 11, 23, 25, 37, 39, 49, 73}, t = 51)

2. ({7, 11, 23, 25, 37, 39, 49, 73}, t = 132)

3. ({7, 11, 23, 25, 37, 39, 49, 73}, t = 200)

18

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Example 5.4. The Vertex Cover (VC) decision problem is the problem of deciding if a simple
graph G = (V,E) has a vertex cover of size k ≥ 0, for some integer k. In other words does G have
a subset C of k vertices for which every edge e ∈ E is incident with at least one vertex in C? Show
that (G, k = 5) is a positive instance of VC, where G is shown below.

1 2 3 7

4 5 6 8

Solution.

19

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

1 2 3 7

4 5 6 8

Figure 3: Graph G1 for Example 5.5.

a

b

c

d

e

f

g

h

i

Figure 4: Graph G2 for Example 5.5.

Example 5.5. Decision problem Half Vertex Cover (HVC) is similar to Vertex Cover (VC), except
now an instance consists of a graph G = (V,E), and the problem is to decide if G has a vertex cover
whose size equals |V |/2. Provide a contraction reduction from VC to HVC. Apply the reduction to the
VC instances (G1, k = 5) and (G2, k = 1), where G1 and G2 are shown in the Figures 3 and 4.

20

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

6 The 3SAT Logic Problem

In this Section we introduce the 3SAT logic problem which will which represents one of the more
important problems in all of Computer Science.

6.1 Boolean Variable Assignments

Before introducing the 3SAT decision problem, we need to understand the concept of a Boolean
variable assignment.

Boolean Variable A variable is said to be Boolean iff its domain equal {0, 1}. We use lowercase
letters, such as x, y, z, x1, x2, . . ., etc., to denote a Boolean variable.

Assignment An assignment over a Boolean-variable set V is a function α : V → {0, 1} that
assigns to each variable x ∈ V a value in {0, 1}. We may represent α using function notation,
or as a labeled tuple.

Example: for the assignment α that assigns 1 to both x1 and x2, and 0 to x3, we may use
function notation and write α(x1) = 1, α(x2) = 1, and α(x3) = 0, or we may use tuple notation
and write

α = (x1 = 1, x2 = 1, x3 = 0),

or
α = (1, 1, 0),

if the associated variables are understood.

Variable Negation If x is a variable, then x is called its negation.

Example: Suppose assignment α satisfies α(x1) = 0. Then (extending α to include negation
inputs) α(x1) = 1.

Literal A literal is either a variable or the negation of a variable .

Example: x1, x3, x3, are x5 all examples of literals.

Consistent A set R of literals is called consistent iff no variable and its negation are both in R.
Otherwise, R is said to be inconsistent.

Example: {x1, x2, x4, x7, x9} is a consistent set, but {x1, x2, x4, x7, x7} is an inconsistent set.

21

Induced Assignment If R = {l1, . . . , ln} is a consistent set of literals, then αR is called the
(partial) assignment induced by R and is defined by α(li) = 1 for all li ∈ R.

Example: the assignment induced by R = {x1, x2, x4, x7, x9} is

α = (x1 = 1, x2 = 0, x4 = 1, x7 = 0, x9 = 0).

22

Definition 6.1. A ternary disjunctive clause is a Boolean formula of the form

l1 ∨ l2 ∨ l3,

where l1, l2, and, l3 are literals. The clause evaluates to 1 in case at least one of l1, l2, or l3 is assigned
1. In this case we say the clause is satisfied. Otherwise it is unsatisfied.

Definition 6.2. An instance of the 3SAT decision problem consists of a set C of ternary disjunctive
clauses. The problem is to decide if there is an assignment α over the variables in C, such that every
clause (l1 ∨ l2 ∨ l3) in C evaluates to 1 under α. If such an assignment α exists, then it is said to be
a satisfying assignment and we say C is satisfiable. Otherwise, C is said to be unsatisfiable.
Finally, the 3SAT decision problem is the problem of deciding whether a set C of ternary clauses is
sastisfiable.

Simplified clause notation. In what follows, we often simplify the clause notation by writing each
clause (l1 ∨ l2 ∨ l3) as (l1, l2, l3).

Example 6.3. Provide a satisfying assignment for

C = {(x1, x2, x3), (x2, x3, x4), (x1, x2, x4), (x1, x3, x4), (x1, x2, x4), (x2, x3, x4), (x1, x3, x4),

(x2, x3, x4), (x2, x3, x4)}.

23

Administrator
Pencil

Administrator
Pencil

7 Interdomain reductions

In this section we look at interdomain mapping reductions that reduce a problem from one domain
to a problem in a different domain. Some of the different mathematical and computer science domains
include the following. include

Mathematics logic, graph theory, algegra and number theory, numerical optimization, geometry

Computer Science machine learning, network design and analysis, data storage and retrieval,
cryptography/security, operating systems, automata and languages, programming languages
and program optimization.

Of course, as is witnessed by interdomain reductions, different domains are often related in several
ways, and thus there is some subjectivity regarding the classifications of problems. Nevertheless, the
above mentioned domains are considered separate and vast areas of research. As we’ll see in the
following examples, interdomain reductions are often the more surprising and clever of all reductions.

The reductions we study in this section both reduce from the 3SAT logic problem. Because of the
ability to reduce 3SAT to other problem domains, 3SAT plays a crucial role in the study of NP-
completness which we cover in the next lecture.

24

The following theorem uses refers to Clique, the decsion-problem version of Max Clique. In this
case, an instance of the Clique is a simple graph G = (V,E) and an integer k ≥ 0. The problem is
to decide if there is a subset C ⊆ V of k vertices that are pairwise adjacent.

Theorem 7.1. 3SAT ≤p
m Clique.

Proof. Let C be a collection of m clauses, where clause ci, 1 ≤ i ≤ m, has the form ci = li1∨ li2∨ li3.
We now define a mapping f(C) = (G, k = m) for which G has anm-clique if and only if C is satisfiable.
G = (V,E) is defined as follows. V consists of 3m vertices, one for each literal lij, 1 ≤ i ≤ m and
1 ≤ j ≤ 3. Then (lij, lrs) ∈ E iff i) i ̸= r and ii) lij is not the negation of lrs (i.e. the two literals are
logically consistent).

First assume that C is satisfiable. Given a satisfying assignment α for C, let liji , 1 ≤ i ≤ m, denote
a literal from clause i that is satisfied by α, i.e. α(liji) = 1. Then, since each pair of these literals is
consistent, (liji , lrjr) ∈ E for all i ̸= r. In other words,

C = {l1j1 , l2j2 , . . . , lmjm}

is an m-clique for G.

Conversely, assume G has an m-clique. Then by the way G is defined the clique must have the form

C = {l1j1 , l2j2 , . . . , lmjm}

where liji is a literal in ci. This is true since no two literal vertices from the same clause can be adjacent
and so each literal vertex in C must come from a different clause. Moreover, by the definition of G,
C is a consistent set of literals. Hence the assignment aC induced by C satisifes every clause of C,
since αC(liji) = 1 satisfies ci, for each i = 1, . . . ,m. Therefore, C is satisfiable.

Finally, we must show is that f(C) may be computed via an algorithm whose running time is
polynomial in m and n. But this can be done via two nested for-loops that iterate through each
pair of clauses i and r, i ̸= r, and identify all consistent pairs of literals (liji , lrjr). This require O(m2)
steps.

25

Administrator
Pencil

Example 7.2. Show the reduction provided in the proof of Theorem 7.1 for input instance

C = {(x1, x1, x2), (x1, x2, x2), (x1, x2, x2)}.

26

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Theorem 7.3. 3SAT ≤p
m Subset Sum.

Let C be a collection of m ternary clauses over n variables. The following table provides the reduction
f(C) = (S, t). The table rows correspond to the (n +m)-digit integers comprising set S, while t is
the integer at the bottom whose first n digits are 1’s and whose final m digits are 3’s.

1 2 3 4 · · · n c1 c2 · · · cm
y1 1 0 0 0 · · · 0 1 0 · · · 0
z1 1 0 0 0 · · · 0 0 0 · · · 0
y2 1 0 0 · · · 0 1 0 · · · 0
z2 1 0 0 · · · 0 0 0 · · · 0
y3 1 0 · · · 0 1 1 · · · 0
z3 1 0 · · · 0 0 0 · · · 1
...

...
...

...
...

yn 1 0 0 · · · 0
zn 1 0 0 · · · 0
g1 1 0 · · · 0
h1 1 0 · · · 0
g2 1 · · · 0
h2 1 · · · 0
...

...
gm · · · 1
hm · · · 1

t 1 1 1 1 · · · 1 3 3 · · · 3

Number yi correpsonds to literal xi, while zi corresponds to literal xi. Thus, since the first n digits of
t are 1’s, we see that, to construct a subset A whose members sum to t, it must either contain yi or
zi, but not both. Also, the final m digits of yi (respectively, zi) indicate which clauses ci are satisfied
by xi (respectively xi).

Now suppose C is satisfiable via some assignment α. Then the subset A needed to sum to t includes
the following numbers. For 1 ≤ i ≤ n, if α(xi) = 1, then add yi to A; otherwise add zi to A. For
1 ≤ j ≤ m, to determine if gj and/or hj should be added to A, consider clause cj = {lj1, lj2, lj3} and
the sum

σj = α(lj1) + α(lj2) + α(lj3).

Since α satisfies C, we must have σj ≥ 1.

Case 1: σj = 1. In this case add both gj and hj for the cj-column to sum to 3.

Case 2: σj = 2. In this case add only gj for the cj-column to sum to 3.

Case 3: σj = 3. In this case neither gj nor hj need to be added since the cj-column already sums to 3.

. Therefore, it is always possible to find a subset A whose members sum to t.

27

Administrator
Pencil

Administrator
Pencil

Conversely, suppose there is a subset A ⊆ S whose members sum to t. Then for each i = 1, . . . , n,
either yi ∈ A or zi ∈ A, but not both. This is true since t’s first n digits are 1’s. Let α be an
assignment over the variables of C such that, for each i = 1, . . . , n α(xi) = 1 iff yi ∈ A. Now consider
clause cj, j = 1, . . . ,m. We know that the digits of the members of A in the cj-column sum to 3.
Thus, one of the members must either be yk or zk for some k = 1, . . . , n. In other words, either
yk ∈ A, xk ∈ cj, and α(xk) = 1 or zk ∈ A, xk ∈ cj and α(xk) = 1. In either case, we see that α
satisfies cj. Therefore, since j = 1, . . . , n was arbitrary, α satisfies C.

Finally, notice that each of the 2m+ 2n integers in S can be constructed in O(m+ n) steps, and so
f(C) = (S, t) can be computed in O(m2 + n2) steps.

28

Example 7.4. Show the reduction given in Theorem 7.3 using input instance

C = {c1 = (x1, x2, x3), c2 = (x1, x2, x3), c3 = (x1, x2, x3), c4 = (x1, x2, x3)}.

Solution.

1 2 3 c1 c2 c3 c4
y1 1 0 0 1 0 0 1
z1 1 0 0 0 1 1 0
y2 1 0 1 0 1 0
z2 1 0 0 1 0 1
y3 1 1 0 1 0
z3 1 0 1 0 1
g1 1 0 0 0
h1 1 0 0 0
g2 1 0 0
h2 1 0 0
g3 1 0
h3 1 0
g4 0 1
h4 0 1

t 1 1 1 3 3 3 3

29

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

8 Proving undecidability with a mapping reduction via the

SMN Theorem

Theorem 8.1. Consider two decision problems A and B where A is undecidable and A ≤m B. Then
B is also undecidable.

Proof. Suppose, by way of contradiction, B is decidable via some URM program B. Let f : A→ B
denote the URM-computable function that witnesses A ≤m B. Then the following is an informal
algorithm for deciding A. On input x, compute f(x). Then place the result f(x) as input to B and
accept x iff B accepts f(x), since x and f(x) must both be either positive or negative instances of
their respective problems A and B. It follows that A is decidable, a contradiction. Therefore, B
must be undecidable.

We now show how the SMN Theorem can be used to define the f(x) described in the above proof.
Given undecidable problem A, design a function g(x, y), so that

1. If x0 is a positive instance of A, then the function of y g(x0, y), obtained by substituting x0 for
x, has an index (i.e. Gödel number) that is associated with a positive instance of B.

2. If x0 is a negative instance of A, then the function of y g(x0, y), obtained by substituting x0 for
x, has an index (i.e. Gödel number) that is associated with a negative instance of B.

Now the SMN Theorem guarantees a total computable function f(x) for which

ϕf(x)(y) = g(x, y).

Therefore, if x is a positive (respectively, negative) instance of A, then index f(x) for the function
g(x, y) is a positive (respectively, negative) instance of B. In other words A ≤m B via reducing
function f(x).

30

Example 8.2. An instance of the decision problem Zero is a Gödel number x, and the problem is to
decide if function ϕx equals the zero function, i.e. the function that returns 0 on every input. Show
that Self Accepting ≤m Zero.

31

a 1

b 2

c 3

d 4

e 5

Figure 5: An example of a bipartite graph

9 Finding maximum matchings in bipartite graphs

The mapping reducibilities provided in Examples 3.1 and 3.2 involved pairs of problems that were
in some sense two sides of the same coin. Our next example involves a more subtle relationship
between two seemingly unrelated graph problems, namely the Max Flow problem and the Maximum

Bipartite Matching (MBM) problem. We’ve already encountered the former Section 6 of the Turing
Reducibility lecture, and now describe the latter before providing a map reduction from MBM to Max

Flow.

A bipartite graph G = (V1, V2, E) consists of two nonempty disjoing sets of vertices V1 and V2 and
a set of edges for which each edge is incident with one vertex in V1 and one vertex in V2. Figure 5
shows an example of a bipartite graph, with the V1 = {a, b, c, d, e} and V2 = {1, 2, 3, 4, 5}.

A matching M in the graph is a subset M ⊆ E of edges of G, no two of which share a common
vertex. Figure 6 shows a matchiing for the graph in Figure 5.

The following definitions prove useful when discussing matchings in a graph. Let M be a matching.

Maximum Matching M is a called a maximum matching iff for any other matching M ′ of G,
|M ′| ≤ |M |.

Maximal Matching M is called maximal iff it is not contained in any larger matching. In other
words, one cannot increase the size of M simply by adding another edge to M .

32

a 1

b 2

c 3

d 4

e 5

Figure 6: The red edges form a maximal matching for the bipartite graph.

Matched and Free Edges The edges of M are called matched edges while the edges in E −M
are called free edges.

Exposed and Covered Vertices Any vertex that is not incident with an edge in M is said to be
exposed by M . otherwise it is covered by M .

Increment Matching M∗ is called an increment of M iff |M∗| = |M |+ 1

Notice that the matching M in Figure 6 is maximal, since no edge can be added to M to increase
its size. Indeed, the only exposed vertices are e and 5, but they are not adjacent. However, M is not
a maximum matching. A maximum matching is shown in Figure 7. This matching is an increment
of M . Finally, MBM is the problem of finding the size of a maximum matching in a bipartite graph.

We now describe a map reduction from MBM to Max Flow. Let G = (V1, V2, E) be a bipartite graph.
Then

f(G) = G′ = (V ′, E ′, c, s, t),

where the directed network G′ is defined as follows.

Vertices V ′ = V1 ∪ V2 ∪ {s, t}, where s is the source vertex and t is the destination vertex

Edges i) (s, u) ∈ E ′ for each vertex u ∈ V1, ii) (v, t) ∈ E ′ for each vertex v ∈ V2, and iii) if
e = (u, v) ∈ E is an edge of G, with u ∈ V1 and v ∈ V2, then e = (u, v) ∈ E ′ is a directed edge
of G′. Note: such an edge are called an original edge because it also exists in G.

Capacity all edges are assigned unit (i.e. 1) capacity

33

a 1

b 2

c 3

d 4

e 5

Figure 7: The green edges form a maximum matching for the bipartite graph.

Figure 8 shows f(G) for the instance G of MBM shown in Figure 5.

Theorem 9.1. The above-described mapping from MBM to Max Flow is a mapping reduction, i.e. G
has a matching of size k iff G′ has a flow of size k.

Proof. Suppose M is a matching for G, with |M | = k. Then there exists a flow fM on G′ with the
following property. For each edge e = (u, v) ∈M ,

fM(s, u) = fM(e) = fM(v, t) = 1,

and fM(e) = 0 for all other edges e ∈ E ′. Figure 9 shows fM for the network G′ = f(G), where G
and M are the respective bipartite graph and matching shown in Figure 6.

To show that fM is a flow, first note that fM(e) ≤ 1 and thus fM never exceeds the unit capacity
limit of e. We now show that each vertex u ∈ V1 ∪ V2 preserves flow. Without loss of generality,
assume u ∈ V1. Case 1: u is exposed by M . Then there is no edge e ∈ M that is incident with u.
Then, by definition of fM , there is zero flow both entering and leaving u. Case 2: u is covered by M .
Then fM(s, u) = 1 and there is unit flow entering u. Also, there is a unique edge e ∈ M for which
e = (u, v), for some v ∈ V2. Thus, fM(e) = 1 and there is unit flow leaving u. Therefore, u conserves
flow. Finally, notice that s(fM) = |M | = k, the size of M .

Now assume G′ = f(G) has a flow f of size k, where k is a nonnegative integer. Based on the
Max-Flow algorithm, we may assume that f(e) is either 0 or 1, for every e ∈ E ′. Let M denote the
set of original edges e of G′ for which f(e) = 1. Then we claim that M is a matching for G and that
|M | = k. To see this, since s(f) = k, there are exactly k edges of the form (s, u) for which f(s, u) = 1.
Then for each u for which f(s, u) = 1 there is a unique vertex vu ∈ V2 for which f(u, vu) = 1. This

34

a 1

b 2

s c 3 t

d 4

e 5

Figure 8: The directed network G′ = f(G), where G is the graph in Figure 5.

is because u must conserve flow and there is one unit of flow entering u. It follows then that

M = {(u, vu)|f(s, u) = 1

is a matching and that |M | = k.

When reducing MBM to Max Flow using the mapping defined above, each residual network G′
f that

results from a flow f through G′ can be easily drawn using the following rule: for each e ∈ E ′, if
f(e) = 1, then e is oriented backwards in G′

f . Otherwise it remains forward oriented. Furthermore,
what we earlier referred to as an augmenting path is now called an alternating path because,
upon leaving s, it has the property of first reaching an exposed vertex in V1, followed by alternating
between forward and backward edges until it reaches an exposed vertex of V2, and finally reaches t.
Figure 10 shows the residual network G′

fM
for the network G′ and flow fM showed in Figure 9. Also,

Figure 11 shows an alternating path (in green) for G′
fM

.

Finally, there is a nice way to characterize the increment matching M ′ that one obtains from
alternating path P . Namely, M ′ = M ⊕ P , where the (edge) set operation M ⊕ P is called the
symmetric difference between M and P and consists of all edges that are either in M but not P ,
or in P but not M (here, we neither include the edge that leaves s, nor the one that enters t).

35

a 1

b 2

s c 3 t

d 4

e 5

Figure 9: The network G′ = f(G), with flow fM (in red) associated with matching M from Figure 6.

a 1

b 2

s c 3 t

d 4

e 5

Figure 10: Residual network G′
fM

for graph G′ and flow fM from Figure 9.

36

a 1

b 2

s c 3 t

d 4

e 5

Figure 11: Alternating path (in green) for residual network G′
fM

of Figure 10.

Maximum Matching Algorithm

Input: bipartite graph G.

Output: a maximum matching for G.

Compute f(G) = G′ = (V ′, E ′, c, s, t).

Initialize matching M : M ← ∅.

While there is a vertex of G that is exposed by M

If G′
fM

has no alternating path, then return M .

Let P be an alternating path of G′
fM

.

M ← P ⊕M .

Return M .

The Perfect Bipartite Matching (PBM) decision problem is the problem of deciding if a bipartite
graph G has a perfect matching, i.e. one that covers every vertex of G. For a bipartite graph to
have such a matching, it must be the case that |V1| = |V2|. Moreover, PBM mapping reducible to the
decsion-problem version of Max Flow, where a problem instance is now a network G and an integer
k, and the problem is to decide if G admits a flow of size k.

37

10 Some Consequences of Reducibility

If we have a reduction (Turing or mapping) from problem A to problem B, what can we infer about
either of the problems? Two things we may be able to learn involve the notions of solvability and
complexity.

We say that, e.g., problem A is solvable iff there is an algorithm that takes as input any instance
x of A and computes the solution to that instance. If no such algorithm exists, then we say that A
is unsolvable. In a later Chapter give examples of several unsolvable problems and techniques for
proving their unsolvability.

Now, assuming A is solvable, the complexity of solving A refers to determining lower bounds on the
amount of memory and/or steps required by any algorithm that solves A. Establishing complexity
bounds for a problem can seem extremely difficult if not impossible, but reducibility can nevertheless
give us some insight with regards to the relative complexity of the problem.

Theorem 10.1. If A ≤T B or A ≤m B, then the following statements hold.

1. If B is solvable then so is A.

2. If A is unsolvable then so is B.

Proof. Since a mapping reducibility is a special case of Turing reducibility, we may assume A ≤T B.

For the first statement, suppose B is solvable via some algorithm B. Let R denote the algorithm
that Turing reduces A to B by making use of queries to a B-oracle. Note that R may not be a valid
algorithm in the sense with which we are normally familiar. This is so because there may not be an
algorithmic way to obtain the answers to the B-queries that appear in the computation. However,
since B is solvable via B, there is an algorithmic means for obtaining the answers, and we may
replace each query of the form query(b), where b is an instance of B, with a call to algorithm B on
input b. Therefore, R together with algorithm B that is used to answer B-queries may be combined
to define an algorithm in the normal sense.

Finally, notice that the second statement is just the contrapositive of the first, an thus is also a true
statement.

38

Theorem 10.2. If A ≤p
m B, then the following statements hold.

1. If B is solvable in O(p(m)) steps, for some polynomial p, where m is the size parameter for B,
then A is solvable in O(r(n)) steps, for some polynomial r(n), where n is the size parameter
for A.

2. If A cannot be solved in O(r(n)) steps, for any polynomial r(n), then B cannot be solved in
O(p(m)) steps for any polynomial p(m).

Proof. As with Theorem 10.1, the second statement is the contrapositive of the first, and so it
suffices to prove the first. To this end, assume B is solvable in O(p(m)) steps via some algorithm B.
Since A ≤p

m B, there is a map f : A → B that is computable in O(q(n)) steps for some polynomial
q(n), where n is the size parameter for A. Moreover, the solution to instance a of A equals the
solution to instance f(a) of B. Therefore, an algorithm for solving A first computes instance f(a)
via the algorithm that computes f , and then applies algorithm B to instance f(a). Now, since f(a)
is computable in O(q(n)) steps, we may assume that the size of f(a) is m = O(q(n)) bits, i.e. each
algorithm step can construct at most O(1) bits of the output. Thus, B runs on input f(a) whose
size is m = O(q(n)) bits which means the algorithm’s running time is O(p(q(n))). Thus, the total
running time for solving instance a is

O(q(n)) + p(q(n))) = O(p(q(n))),

and so we may set r(n) = q(p(n)).

39

Example 10.3. Suppose f map reduces A to B and is computable in O(n3) steps. Furthermore,
suppose algorithm B solves an instance of B in O(m4) steps. Determine the running time of the
following algorithm that solves A.

Algorithm for Solving A

Input: instance a of A.

Output: solution to a.

Compute b = f(a) which is an instance of B.

Return B(b).

40

Exercises

1. Consider the following functions.

//Turing reduces A to B

Boolean solve_A_with_B(int n)

{

//Solve instance n of A by making B-queries

return query_B(n*n) || query_B(n+6);

}

//Turing reduces B to C

Boolean solve_B_with_C(int n)

{

//Solve instance n of B by making C-queries

return !query_C(n+8) && query_C(5*n);

}

Implement a third function solve A with C that is a witness to A ≤T C. Note: your function
must take an instance n of A and return a Boolean decision that uses logic and is allowed to
only make C-queries.

2. Use the previous exercise as inspiration for proving the general result that ≤T reducibility
relation is transitive. In other words, if A ≤T B and B ≤T C, then A ≤T C.

3. Recall the Even and Odd decision problems from Example 3.1. Which of the following functions
provides a mapping reduction from Even to Odd?

a. f(n) = n2

b. f(n) = 2n+ 5

c. f(n) = 3n− 7

4. Draw the complement of the graph below.

1 2 3

4 5 6

5. For the mapping reduction f : Max IS → Max Clique in Example 3.2 defined by f(G) = G,
explain why f may also be used to reduce Max Clique to Max IS.

6. Given the instance S = {16, 21, 23, 25, 38, 47, 55, 73} of Set Partition, provide the instance
of SS to which it reduces via the mapping f(S) = (S, t = M/2).

41

7. The graph G shown below represents an instance of the Hamilton Path decision problem.
Compute f(G), where f is the mapping reduction from HP to LPath described in Example 4.10.
Verify that the mapping is correct in the sense that the decision for G is equal to the decision
for f(G). Explain.

1 2

3 4

8. Repeat Example 5.3 but with the following instances of Subset Sum to Set Partition.

a. ({3, 7, 11, 29, 44, 53, 66, 81}, t = 86)

b. ({3, 7, 11, 29, 44, 53, 66, 81}, t = 147)

c. ({3, 7, 11, 29, 44, 53, 66, 81}, t = 177)

9. An instance of decision problem Set Tri-Partition (STP) is a set of nonnegative integers S,
and the problem is to decide if there exist subsets A1, A2, A3 ⊆ S for which i) A1∪A2∪A3 = S,
ii) Ai ∩ Aj = ∅, for i ̸= j, and iii) ∑

a∈A1

a =
∑
a∈A2

a =
∑
a∈A3

a.

Show that the mapping f : STP→ SS defined by f(S) = (S,M/3) where

M =
∑
s∈S

s,

is not a valid mapping reduction. Hint: provide a negative instance of STP and show that f
maps it to a positive instance.

10. Recall the contraction mapping f from VC to HVC provided in Example 5.5. Suppose G = (V,E)
is a simple graph with |V | = 135. Then if f(G, k = 39) = G′, then describe the relationship
between G′ and G.

11. Repeat the previous exercise, but now assume |V | = 152 and k = 100.

12. The Half Clique decision problem is the problem of deciding if a simple graph G = (V,E) has
a Clique of size |V |/2. Provide an embedding reduction f from Half Clique to Clique.

13. Provide a contraction reduction f from Clique to Half Clique. Defend your answer, meaning
prove that (G, k) is a positive instance of Clique iff f(G, k) is a positive instance of Half

Clique.

14. Consider 3SAT instance

C = {c1 = (x1, x2, x3), c2 = (x1, x2, x3), c3 = (x1, x2, x3)), c4 = (x1, x2, x3)},

consider the polynomial-time mapping reduction f(C) = (G, k) from 3SAT to Clique described
in Theorem 7.1.

42

a. How many edges does G have?

b. What is the value of k? Does G have a k-clique? Explain and provide one if your answer
is “yes”.

15. For the polynomial-time reduction f from 3SAT to Clique described in Theorem 7.1, if an
instance C of 3SAT has 536 clauses and 243 variables, then, given (G, k) = f(C), how many
vertices does G have? Provide a good upper bound on G’s size (i.e. number of edges). What
is the value of k?

16. For the polynomial-time reduction f from 3SAT to Clique described in Theorem 7.1, how does
the reduction change if we reduce from 4SAT instead of 3SAT. Repeat the previous problem but
with the reduction coming from an instance of 4SAT.

17. Consider 3SAT instance

C = {c1 = (x1, x2, x3), c2 = (x1, x2, x3), c3 = (x1, x2, x3)), c4 = (x1, x2, x3)},

consider the polynomial-time mapping reduction f(C) = (S, t) from 3SAT to Subset Sum

described in Theorem 7.3.

a. Draw S and t as a table of values.

b. Does S have a subset that sums to t? Explain and provide one if your answer is “yes”.

18. For the reduction f : 3SAT → SS from 3SAT to Subset Sum provided in Theorem 7.3, if an
instance C of 3SAT has 275 clauses and 57 variables, then how many integers does the set S
have, where f(C) = (S, t)? What is the value of the target integer t?

19. For the reduction f : 3SAT → SS from 3SAT to Subset Sum provided in Theorem 7.3, suppose
an instance C of 3SAT has 57 clauses and 10 variables. Assuming f(C) = (S, t), what is the size
of the smallest subset of S that could possibly sum to the target value t. Explain. What is the
greatest size? Explain.

20. For bipartite graph G = (U, V,E) we have U = {u1, u2, u3, u4}, V = {v1, v2, v3, v4}, and

E = {(u1, v1), (u1, v2), (u1, v4), (u2, v1), (u2, v3),

(u2, v4), (u3, v1), (u3, v3), (u4, v1), (u4, v3)}.

a. Draw G.

b. Does G have a (non-maximum) maximal matching M of size 1? size 2? size 3?

c. For each yes answer to the previous part, draw the residual network G′
fM

associated with
the matching, and provide an alternating path P in G′

fM
. Use the alternating path to find

an increment of M .

21. At a school ice-cream party there are five dixie cups of ice cream that remain to be served.
Each cup has a different flavor: vanilla, chocolate, cherry, rocky road, and mint and chip.
There are five children who have yet to be served: Abe, Ben, Cris, Dan, and Eva. The ice-
cream preferences of these children are shown below.

43

Child Vanilla Chocolate Cherry Rocky Road Mint & Chip
Abe X X X
Ben X
Cris X X
Dan X X
Eva X X

In a rush to get their ice cream, Abe grabbed the cherry, Cris the chocolate, Dan the mint and
chip, and Eva the rocky road. This left Ben with a (vanilla) flavor that he does not like, and
which he refused to eat. Show how the maximum-matching algorithm can be used to increase
the current matching (of four children to four ice creams that they prefer) to a matching of size
five, in which each child will be assigned an ice cream that he or she prefers.

22. Recall the mapping reduction from Max IS to Max Clique described in Example 3.2. Show
that this reduction can be computed in polynomial-time by providing a big-O expression that
gives the running time for computing the reduction. Defend your answer.

23. Recall the mapping reduction from Subset Sum (SS) to Set Partition (SP) described in
Section 5. Show that this reduction can be computed in polynomial-time by providing a big-O
expression that gives the running time for computing the reduction. Defend your answer.

44

Exercise Solutions

1. We have the following function that proves A ≤T C.

//Turing reduces A to C

Boolean solve_A_with_C(int n)

{

//Solve instance n of A by making C-queries

return (!query_C((n*n)+8) && query_C(5*(n*n))) ||

(!query_C((n+6)+8) && query_C(5*(n+6)));

}

2. Suppose A ≤T B. Then there is an algorithm AAB that solves an instance of A by making
queries to a B-oracel. Moreover, since B ≤T C, there is also an algorithm ABC that solves an
instance of B by making queries to a C-oracle.

We now describe an algorithm AAC that solves instances of A by making queries to a C-oracle.
This algorithm is obtained by modifying AAB as follows. For each B-query step query(y), where
y is an instance of B, we replace this B-query step with a function call to ABC(y), which is the
answer returned by ABC on input y. We may think of ABC(y) as a function call that is being
made within the body of AAB. Of course, the ABC function has its own body of source code,
which is now part of the AAC code base. After modifying AAB in this manner, notice that the
only query steps in AAC are found in the inserted ABC code, and are of the form query(z),
where z is a problem instance of C. In other words, all queries are to a C-oracle. Hence, AAC

is an algorithm that Turing reduces A to C.

3. f : Even→ Odd map reduces Even to Odd iff it maps evens to odds and odds to evens (why?).

a. f(n) = n2. No, since f maps evens to evens and odds to odds. For example f(2) = 4.

b. f(n) = 2n + 5. No, since f maps evens to odds, but maps odds to odds. For example,
f(3) = 11.

c. f(n) = 3n− 7. Yes. If n is even, then n = 2k for some integer k. Thus

3n− 7 = 3(2k)− 8 + 1 = 6k − 8 + 1 = 2(3k − 4) + 1,

which is an odd number. Similarly, if n is odd, 3n− 7 is even.

4. The complement graph is shown below.

1 2 3

4 5 6

5. First, notice that Max Clique and Max IS both have the exact same problem instances, namely
the set of all simple graphs. Thus, the domain and codomain of f are identical. Moreover, since
f(G) = G, G will have a clique of size k iff f(G) has an independent set of size k. Therefore,
f may also be used to reduce Max Clique to Max IS.

45

6. f(S) = (S, t = 149)

7. f(G) = (G, k = n − 1) = (G, k = 3). For this instance, the mapping is correct since G is a
negative instance of HP which is equivalent to saying that it does not have a simple path of
length 3. Furthermore G is negative for HP because three of G’s vertices have degree 1, but a
simple path of length three requires at least two vertices that have degree at least 2.

8. Repeat Example 5.3 but with the following instances of Subset Sum to Set Partition.

a. S = {3, 7, 11, 29, 44, 53, 66, 81, 122}
b. S = {3, 7, 11, 29, 44, 53, 66, 81}
c. S = {3, 7, 11, 29, 44, 53, 60, 66, 81}

9. Consider the STP instance S = {6, 12}. Then f(S) = (S, k = 18/3 = 6) is a positive instance
of Subset Sum via A = {6}, but S is a negative instance of STP (why?).

10. Since k = 39 < 135/2 = 67.5, we have f(G, k = 39) = G′, where G′ is the graph G with the
addition of J triangles, where J satisifes

39 + 2J

135 + 3J
=

1

2

which implies J = 57. Thefore, G′ is the same graph G, but with the addition of 57 distinct
triangles. The addition of these triangles will make it so that G′ has a half vertex cover iff G
has a vertex cover of size 39.

11. Since k = 100 > 152/2 = 76, f(G, k = 100) = G′, where G′ is the graph G with the addition
of 2(100)− 152 = 48 new isolated vertices.

12. Let G = (V,E) be a simple graph. Then f(G) = (G, k = |V |/2), i.e. G is a positive instance of
Half Clique iff it has a clique of size |V |/2 iff (G, k = |V |/2) is a positive instance of Clique.

13. The contraction reduction from Clique to Half Clique is similar to the one given in Example 5.5.
Let G = (V,E) be a simple graph and k ≥ 0 be a nonnegative integer between 1 and n = |V |.
If k = n/2, then f(G, k) = G since (G, k) would then be an actual Half Clique problem
instance. Now suppose k < n/2. Then f(G, k) = G′ where G′ is formed by adding J additional
vertices to G and placing edges between them so that they form a J-clique CJ . Futhermore,
we also add an edge between each vertex in CJ and each vertex in V . Therefore, G will have a
k clique iff G′ has a k + J clique. Moreover, this k + J-clique will be a half clique for G′ iff

k + J =
1

2
(n+ J)⇔ J = n− 2k.

Therefore, we require that J = n − 2k. Finally, if k > n/2, then f(G, k) = G′ where G′ is
formed by adding J additional isolated vertices to G Therefore, G will have a k clique iff G′

has a k clique. Moreover, this k-clique will be a half clique for G′ iff

k =
1

2
(n+ J)⇔ J = 2k − n.

46

14. We must count the pairs of consistent vertices between vertex groups c1 − c2, c1 − c3, c1 − c4,
c2 − c3, c2 − c4, c3 − c4. The number of pairs of consistent vertices sums to

6 + 7 + 7 + 8 + 8 + 7 = 43

edges total. Also, k = |[C| = 4 and G does have a 4-clique since α = (x1 = 1, x2 = 1, x3 = 1)
satisfies C (a positive instance of 3SAT must map to a positive instance of Clique). One
such clique is C = {x1, x2, x1, x3}, where the i th literal listed in the set comes from clause ci,
i = 1, 2, 3, 4.

15. We have f(C) = (G = (V,E), k) where k = 536, |V | = 536× 3 = 1608 vertices, and at most

9(536)(535)

2
= 1, 290, 420

edges (yikes!).

16. If 4SAT were used instead of 3SAT, then every vertex group would have 4 (instead of 3) vertices.
Then have f(C) = (G = (V,E), k) where k = 536, |V | = 536× 4 = 2144 vertices, and at most

16(536)(535)

2
= 2, 294, 080

edges (yikes!).

17. We have the following table that describes the members of S and t.

1 2 3 c1 c2 c3 c4
y1 1 0 0 0 0 1 1
z1 1 0 0 1 1 0 0
y2 1 0 0 1 0 0
z2 1 0 1 0 1 1
y3 1 0 0 1 1
z3 1 1 1 0 0
g1 1 0 0 0
h1 1 0 0 0
g2 1 0 0
h2 1 0 0
g3 1 0
h3 1 0
g4 0 1
h4 0 1

t 1 1 1 3 3 3 3

Also, since α = (x1 = 0, x2 = 1, x3 = 1) satisfies C and a positive instance of 3SAT must map
to a positive instance of Subset Sum, (S, t) is a positive instance and

A = {z1, y2, y3, g1, h1, g2, g3, h3, g4, h4}

sums to t = 1, 113, 333 (verify!).

18. |S| = 2(57) + 2(275) = 664, and t = 1 · · · 13 · · · 3 has 57 1’s and 275 3’s.

47

19. The smallest subset of S that could possibly sum to t has a size equal to 10, since either yi or zi
must be selected (but not both) for i = 1, . . . , 10. This corresponds with every literal of every
clause being satisfied by some assignment. On the other hand, the largest subset could have
size equal to 2(57) + 10 = 124. This would be the case where, in addition to selecting a, yi or
zi, both filler numbers would also be selected for every clause. This corresponds with exactly
one literal of every clause being satisfied by some assignment.

20. a. Below is a graph of G = (U, V,E)

u1 v1

u2 v2

u3 v3

u4 v4

b. G does not have a size-1 maximal matching since, for any edge e, there is an edge e2
that does not share any vertices with e. However, M2 = {(u1, v1), (u2, v3)} is a maximal
matching of size 2, since u1 and u2 are the only vertices incident with v2 and v4. Then P =
u4, v1, u1, v4 is an alternating path in G′

FM2
, and M3 = P⊕M2 = {(u1, v4), (u4, v1), (u2, v3)}

is a maximal matching of size 3.

c. G′
FM2

is shown below with an alternating path P drawn in green. This yields increment

M3 = P ⊕M2 = {(u1, v4), (u4, v1), (u2, v3)}.

u1 v1

u2 v2

s u3 v3 t

u4 v4

G′
FM3

is shown below with an alternating path P drawn in green. This yields increment

M4 = P ⊕M3 = {(u1, v2), (u2, v4), (u3, v3), (u4, v1)}.

48

u1 v1

u2 v2

s u3 v3 t

u4 v4

21. Let G = (U, V,E) be the bipartite graph whose U set represents the set of children, and V set
represents the set of ice-cream flavors. The (u, v) ∈ E iff child u likes ice cream v. The children
rushing for their ice cream resulted in the matching

M = {(A,Cher), (C,Choc), (D,MC), (E,RR)}.

The residual network G′
FM

below shows an alternating path P (in green) for which

M∗ = P ⊕M = {(A,V), (B,Choc), (C,RR), (D,MC), (E,Cher)}.

A V

B Choc

s C Cher t

D RR

E MC

49

22. Recall the mapping reduction from Max IS to Max Clique described in Example 3.2. Use high-
level pseudocode (similar to the style used throughout this chapter) to describe an algorithm
that computes the reducing function f(G) = G and requires a polynomial number of steps in
the size parameters for Max IS. Provide a good big-O bound on the running time. Conclude
that Max IS ≤p

m Max Clique.

23. Recall the mapping reduction from Subset Sum (SS) to Set Partition (SP) described in
Section 5. Use high-level pseudocode (similar to the style used throughout this chapter) to
describe an algorithm that computes the reducing function f and requires a polynomial number
of steps in the size parameters for SS. Provide a good big-O bound on the running time.
Conclude that SS ≤p

m SP.

50

