Kleene's Second Recursion Theorem and Self-Referencing Programs

Last Updated May 1st, 2025

Kleene's Second Recursion Theorem

"Know Thyself"

Socrates

Consider a computable function f(x, y), where x is viewed as a Gödel number of some program and y is some other input. The following are some statements that could be made in an informal program that computes f.

- Print the instructions of P_x .
- Simulate the computation of P_x on input y.
- Count the number of Jump instructions that are executed in the computation of P_x on input y.
- Send program x and input y to another computer in the network.
- Return, as a single natural-number encoding, the tuple of configurations that constitutes the computation of P_x on input y.

Now suppose we take f's program statements and re-write them in a self-referencing way, to where we get statements like the following ones.

- Print *my* instructions.
- Simulate *myself* on input *y*.
- Count the number of Jump instructions that I execute when I'm computing input y.
- Send myself and y to another computer in the network.
- Return, as a single natural-number encoding, the tuple of configurations that constitutes my computation on input y.

A program that makes one or more references to its own Gödel number is said to be **self-referencing** (or **self-knowing**). Note that this is *not* the same as a *recursive program* that makes one or more calls to itself using smaller-sized inputs.

Catch-22 for a self-referencing program P

- 1. For P to know its Gödel number, it must know each of its instructions.
- 2. Some instructions, such as "print myself", requires P to know its Gödel number.

Proposed Solution to Catch-22

- 1. Assume for the sake of argument that, after replacing statements about x with statements about itself, that there does in fact exist a program P_e with Gödel number e that computes the resulting function.
- 2. Then P_e is a function of the single variable y (since variable x has been assigned constant e).
- 3. Therefore, we have, for all y, Pe(y) = f(e, y). In other words, there is a program P_e that, on input y computes f(e, y), and thus makes

references (to e which been substituted for x) to its own Gödel number.

- 4. Thus, we have reduced the problem to that of finding a Gödel number e that satisfies the above equation.
- 5. Stephen Kleene's second recursion theorem states that such an e does exist!

Kleene's Second Recursion Theorem. Let f(x, y) be a computable function that takes as input a Gödel number x, and some additional input y. Then there is a Gödel number e for which $\phi_e(y) = f(e, y)$.

Example 1. Consider the URM computable function f(x, y) which, on inputs x and y, simulates y steps of the computation $P_x(y)$, and returns the number of times that a jump instruction was executed. Then by the 2nd recursion theorem, there is a program P_e for which $P_e(y) = f(e, y)$, and so, for input y, P_e simulates y steps of itself on input y.

Suppose \hat{P} computes f(x, y), meaning $\hat{P}(x, y) = f(x, y)$ for all inputs x and y.

Proof of Kleene's Second Recursion Theorem

The idea behind the proof is to divide the construction of the desired program $P_e = ABC$ into three parts: A, B, and C which we now describe. Assume that y is the input to P_e . $P_e(y) = f(e, y)$ Part A. • Move y to register R_2 . • Place *B*'s Gödel number *b* in R_1 . 3 Part B. • Use b in R_1 to compute A's Gödel number a. • Compute C's Gödel number c. R_1 • Compute $e = \gamma(\gamma^{-1}(a), \gamma^{-1}(b)\gamma^{-1}(c)) = \gamma(ABC) = \gamma(P),$ the Gödel number of the concatenation of A's, B's, and C's instructions. • Place e in R_1 , with y remaining in R_2 . Part C. Compute f(e, y). $\mathcal{B} = AB$ Notes. Pe computes f(e,y)

- 1. The most straightforward of the three is part C, since its sole purpose is to compute function f(x, y) with x set to e. Since the theorem assumes that f(x, y) is URM computable, C's instructions consist of the instructions of the URM program used to compute f(x, y).
- 2. The clever part of the above program is understanding how A is able to compute B's Gödel number and vice versa.

Computing A's Gödel number

For the moment, assume that B's Gödel number b is known. Then the following program does exactly what A is supposed to do: take input y and move it to R_2 and place b in R_1 .

$$A = T(1, 2), \underbrace{S(1), S(1), \dots, S(1)}_{b \text{ times}} \cdot B (S(1)) = G(S(1)) = G(T(1, 2)), \underbrace{B(S(1)), B(S(1)), \dots, B(S(1))}_{b \text{ times}} = \frac{\gamma(A) = \beta(T(1, 2)), \underbrace{B(S(1)), B(S(1)), \dots, B(S(1))}_{b \text{ times}} = \frac{\beta(T(1, 2)), \underbrace{B(S(1)), B(S(1)), \dots, B(S(1))}_{b \text{ times}} = \frac{\beta(T(1, 2)), \underbrace{B(S(1)), B(S(1)), \dots, B(S(1))}_{b \text{ times}} = \frac{\beta(T(1, 2)), \underbrace{B(S(1)), B(S(1)), \dots, B(S(1))}_{b \text{ times}} = \frac{\beta(T(1, 2)), \underbrace{B(S(1)), B(S(1)), \dots, B(S(1))}_{b \text{ times}} = \frac{\beta(T(1, 2)), \underbrace{B(S(1)), B(S(1)), \dots, B(S(1))}_{b \text{ times}} = \frac{\beta(T(1, 2)), \underbrace{B(S(1)), B(S(1)), \dots, B(S(1))}_{b \text{ times}} = \frac{\beta(T(1, 2)), \underbrace{B(S(1)), B(S(1)), \dots, B(S(1))}_{b \text{ times}} = \frac{\beta(T(1, 2)), \underbrace{B(S(1)), B(S(1)), \dots, B(S(1))}_{b \text{ times}} = \frac{\beta(T(1, 2)), B(S(1)), B(S(1)), \dots, B(S(1))}_{b \text{ times}} = \frac{\beta(T(1, 2)), B(S(1)), B(S(1)), \dots, B(S(1))}_{b \text{ times}} = \frac{\beta(T(1, 2)), B(S(1)), B(S(1)), \dots, B(S(1))}_{b \text{ times}} = \frac{\beta(T(1, 2)), B(S(1)), B(S(1)), \dots, B(S(1))}_{b \text{ times}} = \frac{\beta(T(1, 2)), B(S(1)), B(S(1)), \dots, B(S(1))}_{b \text{ times}} = \frac{\beta(T(1, 2)), B(S(1)), B(S(1)), \dots, B(S(1))}_{b \text{ times}} = \frac{\beta(T(1, 2)), B(S(1)), B(S(1)), \dots, B(S(1))}_{b \text{ times}} = \frac{\beta(T(1, 2)), B(S(1)), B(S(1)), \dots, B(S(1))}_{b \text{ times}} = \frac{\beta(T(1, 2)), B(S(1)), B(S(1)), \dots, B(S(1))}_{b \text{ times}} = \frac{\beta(T(1, 2)), B(S(1)), B(S(1)), \dots, B(S(1))}_{b \text{ times}} = \frac{\beta(T(1, 2)), B(S(1)), B(S(1)), \dots, B(S(1))}_{b \text{ times}} = \frac{\beta(T(1, 2)), B(S(1)), B(S(1)), \dots, B(S(1))}_{b \text{ times}} = \frac{\beta(T(1, 2)), B(S(1), B(S(1)), \dots, B(S(1))}_{b \text{ times}} = \frac{\beta(T(1, 2)), B(S(1), B(S(1)), \dots, B(S(1))}_{b \text{ times}} = \frac{\beta(T(1, 2)), B(S(1), B(S(1)), \dots, B(S(1))}_{b \text{ times}} = \frac{\beta(T(1, 2)), B(S(1), B(S(1)), \dots, B(S(1))}_{b \text{ times}} = \frac{\beta(T(1, 2)), B(S(1), B(S(1)), \dots, B(S(1))}_{b \text{ times}} = \frac{\beta(T(1, 2)), B(S(1), B(S(1)), \dots, B(S(1))}_{b \text{ times}} = \frac{\beta(T(1, 2)), B(S(1), B(S(1)), \dots, B(S(1))}_{b \text{ times}} = \frac{\beta(T(1, 2)), B(S(1), B(S(1)), B(S(1)), B(S(1))}_{b \text{ times}} = \frac{\beta(T(1, 2)), B(S(1), B(S(1)), B(S(1)),$$

The above computation gives us the following lemma.

Lemma. Let k(x) denote the Gödel number of the program that transfers the single input y into register 2 and then places x into register 1. Then

$$k(x) = 1024\left(\frac{4^{x+1}}{3}\right) - 1.$$

Corollary. If b is the Gödel number of program B, then A's Gödel number is k(b).

Computing B's Gödel number

Program B's Gödel number b of may be computed by γ -encoding the following program.

Program B

Input Gödel number z.

Compute Gödel number k(z).

Compute $c = \gamma(C)$.

Return $\gamma(\gamma^{-1}(k(z)), \gamma^{-1}(z)(c))$

Important: notice that B's program does not depend on knowing A's Gödel number a. If it did, then it would create a circularity error, since a = k(b) already depends on B's Gödel number. However, B is able to compute a once it receives its own Gödel number z = b as input since in this case the first step of its algorithm (after reading input a) yields a = k(b).

~-1(c)

Thus, we see that, after the execution of A on input y, B receives input z = b which gives

$$a = k(z) = k(b),$$

and so B outputs into R_1 the value

$$e = \gamma(\gamma^{-1}(a), \gamma^{-1}(b), \gamma^{-1}(c)) = \gamma(ABC) = \gamma(P_e).$$

The following diagram shows the results of all three programs combined in sequence, where $v \xrightarrow{X} w$ means that program X inputs v and outputs w. Then we have

$$y \xrightarrow{A} (b, y) \xrightarrow{B} (e = \gamma(ABC), y) \xrightarrow{C} f(e = \gamma(ABC), y).$$

Therefore, $P_e = ABC$ computes

$$\phi_e(y) = f(e, y),$$

and the proof is complete.

The self Programming Statement

The Recursion theorem gives rise to a tool that may be used when writing a program P. Namely, we may make reference to P's Gödel number, which is represented with the keyword **self**. This allows for a program to become more *autonomous* and *self-adaptable* to its environment. For example, a program can be made to analyze its own data, make adjustments to its program code, followed by re-compilation and execution.

Example 2. The following are valid programming statements for program P.

```
void f(unsigned int y)
{
    if(y == 0) {print("bad input!\n"); return;}
    int length = instructions(self).length;
    print("Hi! I have Godel number equal to ");
    print(self);
    print(".\nI have ");
    print(length);
    print(" instructions ");
    if(y > length)
    {
        print(" which is fewer than your input ");
        print(y);
    }
    else
    {
        print("My instruction number ");
        print(y);
        print(" is ");
        print(to_string(instructions(self)[y-1]));
    }
     print("\n");
}
```

To justify such a program, suppose $y \in \mathcal{N}$ is the input to P, and the purpose of P is to implement the unary computable function f(y). Then we may do the following.

- 1. Transform P by adding another input x, so that we are now implementing function f(x, y).
- 2. Replace each occurrence of self with x.

```
void f(unsigned int x, unsigned int y)
{
    if(y == 0) {print("bad input!\n"); return;}
    int length = instructions(x).length;
    print("Hi! I have Godel number equal to ");
    print(x);
    print(".\nI have ");
    print(length);
    print(" instructions ");
    if(y > length)
    {
        print(" which is fewer than your input ");
        print(y);
    }
    else
    {
        print("My instruction number ");
        print(y);
        print(" is ");
        print(to_string(instructions(x)[y-1]));
    }
     print("\n");
}
```

3. Use the method described in the proof of Kleene's 2nd Recursion Theorem to compute an e for which P_e computes

$$\phi_e(y) = f(e, y).$$

- 4. Thus, P_e computes f(y), with e substituted for x.
- 5. Therefore, P_e 's references to self are justified, since self = e, the Gödel number of the program that computes f(y).

1 Self Reference Portrayed in Art and Mathematics

M.C. Escher's "Drawing Hands". 1948

M.C. Escher's "Three Spheres". 1946

Kurt Gödel: First-Order Peano Arithmetic (FOPA) is incomplete (i.e. not all true statements in FOPA can be proven true) since there is a logical statement that can be expressed within FOPA and that asserts it own unprovability within FOPA. Formula's meaning: "I am not provable".

Kleene's 2nd Recursion Theorem and Undecidability

Recall that a **predicate function** is one whose codomain is $\{0, 1\}$. Moreover, associated with every decision problem A is a predicate function $d_A : A \to \{0, 1\}$, called the **decision function** (or **indicator function**) for A and for which

$$d_A(x) = \begin{cases} 1 & \text{if } x \text{ is a positive instance of } A \\ 0 & \text{if } x \text{ is a negative instance of } A \end{cases}$$

Finally, we say that A is **decidable** iff function d_A is total URM-computable. In other words, there is a URM program P_A that

- 1. halts on all inputs,
- 2. has a range equal to $\{0, 1\}$, and
- 3. for any input x, outputs 1 iff x is a positive instance of A.

On the other hand, if A's decision function is not total URM computable, then A is said to be **undecidable**.

Example. Consider the decision problem **Even** whose instances are natural numbers and where a positive instance of **Even** is an even natural number. Then **Even** is decidable via Example 3.8 of the Computability lecture.

1.1 Program properties

A decision problem A is said to decide a **program property** iff each instance x of A is interpreted as a Gödel number. Moreover, we say that program P_x "has property A" iff $d_A(x) = 1$.

The following are some examples of program properties.

Self Accept x has the Self Accept property iff P_x accepts its own input: i.e. $P_x(x) = 1$. Halt x has the Halt property iff P_x halts on its own input: i.e. $P_x(x) = \downarrow$. Total x has the Total property iff P_x halts on all inputs. Zero x has the Zero property iff $\phi_x(y) = 0$ for all $y \in \mathcal{N}$. The **self** programming construct that is made possible by Kleene's 2nd Recursion theorem may be readily used to prove the undecidability of most program properties.

The idea is outlined as follows.

- 1. Let A be a program property that we want to prove is undecidable.
- 2. Let $d_A(x)$ denote A's decision function.
- 3. Assume A is decidable in which case $d_A(x)$ is total computable.
- 4. Consider the following program P.

Input $y \in \mathcal{N}$. If $d_A(\texttt{self}) = 1$, //P has property A. Return a value that implies P does not have property A. Else // $d_A(\texttt{self}) = 0$ and thus P does not have property A. Return a value that implies P does have property A.

5. Regardless of whether or not P has property A, a contradiction arises. Therefore, the assumption that A is decidable must be false.

Example 3. An instance of the Halting Problem is a pair of numbers (x, y) and the problem is to decide if $P_x(y) \downarrow$, i.e. if program P_x halts on input y. We prove that the Halting Problem is undecidable.

Solution. Suppose Halting Problem is decidable, i.e.

$$H(x,y) = \begin{cases} 1 & \text{if } y \in W_x \iff \mathcal{P}_X (\mathcal{Y}) \\ 0 & \text{otherwise} \end{cases}$$

Phalts on input y, but Ploops forever on y, a Contradiction.

is total computable. Now consider the following program P. Case 1: If $H(self, y) = 1 \Longrightarrow$

Input $y \in \mathcal{N}$.

If H(self, y) = 1, loop forever.

Return 1.

Let e = self denote the Gödel number for P. Then $P_e(e) = 1$ provided H(e, e) = 0 iff $P_e(e)$ does not halt, a contradiction. Similarly, $P_e(e)$ does not halt provided H(e, e) = 1 iff $P_e(e)$ does halt, another contradiction. Therefore, the assumption that Halting Problem is decidable must be false.

Case 2:
$$H(self, 5) = 0 \implies$$

 $P(y)$, but
 $P(y) = 1$, a
contradiction

Example 4. Prove that the Total decision problem is undecidable. Also, give examples of programs P_1 and P_2 for which $d_{\text{Total}}(\gamma(P_1)) = 1$ and $d_{\text{Total}}(\gamma(P_2)) = 0$.

Example 4b. An instance of the decision problem One-to-One is a Gödel number x, and the problem is to decide if function ϕ_x is a one-to-one function, meaning that, for every z in the range of ϕ_x , there is *exactly one* y for which $\phi_x(y) = z$. Consider the One-to-One decision function

$$g(x) = \begin{cases} 1 & \text{if } \phi_x \text{ is one-to-one} \\ 0 & \text{otherwise} \end{cases}$$
Evaluate $g(x)$ for each of the following Gödel number's x .

$$y(x) = \begin{cases} 1 & \text{if } \phi_x \text{ is one-to-one} \\ 0 & \text{otherwise} \end{cases}$$

$$f^{-1}(\alpha) = \begin{cases} 1 & \text{otherwise} \end{cases}$$

$$f^{-1}(\alpha) = \begin{cases} 1 & \text{otherwise} \end{cases}$$

$$f^{-1}(\alpha) = \begin{cases} 1 & \text{otherwise} \end{cases}$$

$$g(x) = \begin{cases} 1 & \text{otherwise} \end{cases}$$

$$g(x) = \begin{cases} 1 & \text{otherwise} \end{cases}$$

$$f^{-1}(\alpha) = \begin{cases} 1 & \text{otherwise} \end{cases}$$

$$g(x) = \begin{cases} 1 & \text{otherwise} \end{aligned}$$

$$g(x) = \end{cases}$$

$$g(x) = \begin{cases} 1 & \text{otherwise} \end{aligned}$$

$$g(x) = \begin{cases} 1 & \text{otherwise} \end{aligned}$$

$$g(x) = \end{cases}$$

$$g(x) = \begin{cases} 1 & \text{otherwise} \end{aligned}$$

$$g(x) = \end{cases}$$

$$g(x) = \begin{cases} 1 & \text{otherwise} \end{aligned}$$

$$g(x) = \end{cases}$$

$$g(x$$

Prove that g(x) is not URM computable. In other words, there is no URM program that, on input x, always halts and either outputs 1 or 0, depending on whether or not ϕ_x is a one-to-one function. Do this by writing a program P that uses g and makes use of the **self** programming construct. Then show how P creates a contradiction.

Other Applications of Kleene's 2nd Recursion Theorem

A subset $A \subset \mathcal{N}$ of the natural numbers is said to be **recursively enumerable** iff there is a program that can print all the members of A in a (possibly infinite) list, in no particular order. Also, we say that decision problem A is recursively enumerable if the set of positive instances of A is recursively enumerable.

Note: A is recursively enumerable iff there is a total computable function f for which $A = \operatorname{range}(f)$.

Example. Show that the set of even natural numbers is recursively enumerable.

Solution. The following program prints all even natural numbers.

Input $x \in \mathcal{N}$.

For each i = 0, 1, ...

Print 2i.

0,2,4,6,8, ...

Theorem. If decision problem A is decidable, then it is recursively enumerable.

Proof. Let $d_A(x)$ denote A's decision function. Since A is decidable there is a program P that halts on all inputs, and for which $P(x) = d_A(x)$ for all $x \in A$. Then the following program prints all the positive instances of A.

For each i = 0, 1, ...,

Simulate P on input i. If P(i) = 1, then print i. **Example.** Show that Self Accept is recursively enumerable, i.e. we can print the set $\{i|P_i(i)\downarrow\}$.

Solution. The idea is to simultaneously simulate all computations $P_i(i)$, $i \ge 0$. This is accomplished by breaking up the process into rounds $0, 1, 2, \ldots$ where in Round *i* we perform a simulation step for each of $P_0(0), \ldots, P_i(i)$. The following program does this.

Initialize infinite Boolean array printed so that printed[i] = 0, for all i = 0, 1, ...Initialize infinite Configuration array config so that $config[i] = \emptyset$, for all i = 0, 1, ...For each i = 0, 1, ...,For each j = 0, 1, ..., i, If printed[j] = 1, then continue. //j has already been printed If j < i, then If $is_final_config[j]$, then 1. Print j. 2. printed[j] = 1Else $config[j] = next_config(j, config[j])$. Else $config[i] = initial_config(i)$. Po(D) Prog. Po (6) P(I)P, (2) $P_{3}(3)$ 0 0 0 output list = 0,2

4

Program P_x is said to **minimal** iff there is no y < x for which $\phi_y = \phi_x$. In other words, x is an index for ϕ_x and there is no smaller index.

Gödel Number/index	Program	Function	Minimal?
0	$P_0 = Z(1)$	$\phi_0(z) = 0$	Yes
1	$P_1 = S(1)$	$\phi_1(z) = 4$	Yes
2	$P_2 = T(1,1)$	$\phi_2(z) = \mathbf{Z}$	les
3	$P_3 = J(1, 1, 1)$		Yes
4	$P_4 = Z(2)$	$\phi_4(z) = \mathbf{z}$	NO
5	$P_5 = S(2)$	$\phi_4(z) = \mathbf{\Xi}$	NO

Example. Complete the following table.

Theorem 3. If M denotes the set of all Gödel numbers x for which P_x is minimal, then \bigvee is not recursively enumerable.

Proof of Theorem 3. Suppose M is recursively enumerable. Then it is an exercise to show that there is a total computable unary function f whose range is equal to M. In other words $M = \{f(i) | i \in \mathcal{N}\}$. Consider the following program P.

Input $x \in \mathcal{N}$. For each i = 0, 1, ... $f(i) = \underbrace{\mathcal{C}}_{i} > \operatorname{Self}_{i}$ If $f(i) > \operatorname{self}_{i}$, then break. Simulate program $P_{f(i)}$ on input x, and return y in case $P_{f(i)}(x) \downarrow y$.

Let e be the Gödel number of P. Then it follows that $\phi_e = \phi_{f(i)}$. But f(i) > e which contradicts the fact that $f(i) \in M$. Therefore, the assumption that M is r.e. must be false.

Theorem 4. Let f be a total computable unary function. Then there is a number $n \in \mathcal{N}$ for which $\phi_n = \phi_{f(n)}$. We refer to n as a **fixed point** for f.

Proof of Theorem 4. Consider the following program *P*.

Input $x \in \mathcal{N}$.

Compute y = f(self).

Simulate program P_y on input x, and return z in case $P_y(x) \downarrow z$.

Then

$$\phi_y = \phi_{f(\texttt{self})} = \phi_{\texttt{self}},$$

and so n =**self** is a fixed point for f.

An Application to Complexity Theory

The **self** programming construct may be applied to obtain a relatively simple proof of a fundamental theorem in complexity theory called the *Time Hierarchy Theorem*.

Time Hierarchy Theorem. Let $t(n) \ge n \log n$ be a computable function, for which the value t(n) may be computed in O(t(n)) steps. Then there is a decision problem L that may be decided in O(t(n)) steps, but cannot be decided in $o(t(n)/\log n)$ steps.

Corollary. For any positive integer $k \ge 2$, there is a decision problem that can be decided in $O(n^k)$ steps, yet cannot be decided in $O(n^{k-1})$ steps.

For example, there is a decision problem that can be decided within a cubic (i.e. $O(n^3)$) number of steps, yet cannot be decided within a quadratic (i.e. $O(n^2)$) number of steps.

Space Hierarchy Theorem. Let $s(n) \ge \log n$ be a computable function, for which the value s(n) may be computed with O(s(n)) amount of computer memory. Then there is a decision problem L that may be decided using O(s(n)) amount of computer memory, but cannot be decided using only o(s(n)) amount of memory.

Exercises

- 1. With respect to Kleene's 2nd Recursion Theorem, prove that there are infinitely many values e for which $\phi_e(y) = f(e, y)$. Hint: consider program B in the proof of the theorem.
- 2. Recall that a function $f : \mathcal{N} \to \mathcal{N}$ is **onto** provided for every $y \in \mathcal{N}$ there is an $x \in \mathcal{N}$ for which f(x) = y. Consider the function

$$g(x) = \begin{cases} 1 & \text{if } \phi_x \text{ is onto} \\ 0 & \text{otherwise} \end{cases}$$

Evaluate g(a), g(b), and g(c), where

- (a) $\phi_a(y) = y^2$
- (b) $\phi_b(y) = 1$
- (c) $\phi_c(y) = y$.
- 3. Prove that the function

$$g(x) = \begin{cases} 1 & \text{if } \phi_x \text{ is onto} \\ 0 & \text{otherwise} \end{cases}$$

is not URM computable. In other words, there is no URM program that, on input x, always halts and either outputs 1 or 0 as output, depending on whether or not ϕ_x is onto. Do this by writing a program P that uses g and makes use of the **self** programming construct.

4. Recall that W_x denotes the domain of the function $\phi_x(y)$, i.e. the natural number inputs y to ϕ_x for which $\phi_x(y)$ is defined. Consider the function

$$g(x) = \begin{cases} 1 & \text{if } W_x = \emptyset \\ 0 & \text{otherwise} \end{cases}$$

Evaluate g(a), g(b), and g(c), where

- (a) $P_a = S(2), S(2), S(1), J(1, 2, 6), J(1, 1, 3)$
- (b) $P_b = S(2), J(2,3,3), J(1,1,1)$
- (c) $P_c = S(1), S(1), S(2), J(1, 2, 6), J(1, 1, 1)$
- 5. Prove that the function

$$g(x) = \begin{cases} 1 & \text{if } W_x = \emptyset \\ 0 & \text{otherwise} \end{cases}$$

is not URM computable. In other words, there is no URM program that, on input x, always halts and either outputs 1 or 0 as output, depending on whether or not ϕ_x has an empty domain. Do this by writing a program P that uses g and makes use of the **self** programming construct. Then show how P creates a contradiction.

6. Consider the function

$$g(x) = \begin{cases} 1 & \text{if } |E_x| = \infty \\ 0 & \text{otherwise} \end{cases}$$

In other words g(x) = 1 iff function $\phi_x(y)$ has an infinite range, meaning that it outputs an infinite number of different values. Evaluate g(a), g(b), and g(c), where

- (a) $\phi_a(y) = y^2$ (b) $\phi_b(y) = y$ (c) $\phi_c(y) = \text{sgn}(y).$
- 7. Prove that the function

 $g(x) = \begin{cases} 1 & \text{if } |E_x| = \infty \\ 0 & \text{otherwise} \end{cases}$

is not URM computable. In other words, there is no URM program that, on input x, always halts and either outputs 1 or 0 as output, depending on whether or not ϕ_x has an infinite range. Do this by writing a program P that uses g and makes use of the **self** programming construct. Then show how P creates a contradiction.

8. Rice's theorem states that if C_1 denotes the set of unary computable functions, and \mathcal{B} is a nonempty proper subset of C_1 , then the predicate function

$$B(x) = \begin{cases} 1 & \text{if } \phi_x \in \mathcal{B} \\ 0 & \text{otherwise} \end{cases}$$

is undecidable. Prove Rice's theorem by writing an informal program P that uses B(x) and makes use of the **self** programming construct. Then show how P creates a contradiction. Hint: assume B(x) is decidable, and take advantage of the fact that the set of functions \mathcal{B} is both nonempty and not all of C_1 .

- 9. For each constant $n \ge 1$, show that $\lfloor x^{1/n} \rfloor$ is a primitive-recursive function of x.
- 10. Prove that there exists an n for which $\phi_n(x) = \lfloor x^{1/n} \rfloor$. Hint: use the s-m-n theorem and Theorem 4.
- 11. Recall that program P_x has the self-output property iff $x \in E_x$. By writing an informal program that makes use of the programming construct **self**, prove that the self-output property is undecidable.
- 12. Show that there is a number e for which $\phi_e(x) = e^{10}$, for all $x \in \mathcal{N}$.
- 13. Consider the following description of a function f(n). On input n, return the Gödel number of the program P' that is the result of appending program P_n with a minimum number of successor instructions $S(1), \ldots, S(1)$ so that it is always guaranteed that, should P_n halt on an input, then the final instruction of P' will be one of these successor instructions. Then by the Church-Turing thesis, f is total computable. Moreover, prove that, if n is a fixed point for f(n), i.e. $\phi_n = \phi_{f(n)}$, then necessarily $\phi_n(x)$ is undefined for all x.

Exercise Solutions

1. Since the proof of Kleene's 2nd Recursion Theorem constructs e as $e = \gamma(ABC)$, by changing the instructions of B, we get a new value for e, since B has changed. We only have to make sure that B's instructions are changed in a trivial way that does not affect its functionality as described in the proof.

- 2. A function $\phi_x(y)$ is onto iff $E_x = \mathcal{N}$, where E_x denotes the range of ϕ_x . Thus,
 - (a) g(a) = 0 since $\phi_a(y) = y^2$ is not onto since $E_a = \{1, 4, 9, 25, \ldots\} \neq \mathcal{N}$,
 - (b) g(b) = 0 since $\phi_b(y) = 1$ is not onto since $E_b = \{1\} \neq \mathcal{N}$, and
 - (c) g(c) = 1 since $\phi_c(y) = y$ is onto since $E_c = \mathcal{N}$.
- 3. We have the following program P.

```
Input y \in \mathcal{N}.
If g(\texttt{self}) = 1, loop forever.
Return y;
```

If g(self) = 1, then P has a range equal to \mathcal{N} which is impossible since it does not terminate on any input (loops forever). If g(self) = 0, then P does not have a range equal to \mathcal{N} , which is contradicted by the fact that P returns y on input y, and so has the set of return values $\{0, 1, \ldots\} = \mathcal{N}$.

- 4. We have the following answers.
 - (a) g(a) = 0 since P_a terminates on input 1 (verify!) and thus $W_a = \{1\} \neq \emptyset$.
 - (b) g(b) = 1 since P_b does not terminate on any input (why?) and thus $W_b = \emptyset$.
 - (c) g(c) = 1 since P_c does not terminate on any input (why?) and thus $W_c = \emptyset$.
- 5. We have the following program P.

Input $y \in \mathcal{N}$. If g(self) = 1, Return 0. Loop Forever.

If g(self) = 1, then it means $W_{\text{self}} = \emptyset$, but P returns 0 for each input y, which implies $W_{\text{self}} = \mathcal{N}$, a contradiction.

If g(self) = 0, then it means $W_{\texttt{self}} \neq \emptyset$, but P loops forever on each input y, which implies $W_{\texttt{self}} = \emptyset$, a contradiction.

- 6. We have the following answers.
 - (a) g(a) = 1 since $\phi_a(y) = y^2$ has an infinite range: $E_a = \{1, 4, 9, 25, \ldots\},\$
 - (b) g(b) = 1 since $\phi_b(y) = y$ has an infinite range $E_b = \mathcal{N}$, and
 - (c) g(c) = 0 since $\phi_c(y) = \operatorname{sgn}(y)$ has finite range equal to $\{0, 1\}$.
- 7. Consider the following program P.

Input $y \in \mathcal{N}$. If g(self) = 1, Return 0. Return y. If g(self) = 1, then it means $|E_{\texttt{self}}| = \infty$, but the program returns 0 for each input y, which implies $E_{\texttt{self}} = \{0\}$ which is finite, a contradiction.

If g(self) = 0, then it means $|E_{\texttt{self}}|$ is finite, but the program returns y on each input y, which implies $E_{\texttt{self}} = \mathcal{N}$, a contradiction.

8. Assume B(x) is decidable. Since \mathcal{B} is nonempty there exists a unary computable function $f \in \mathcal{B}$. Similarly, since \mathcal{B} is not all of \mathcal{C}_1 , there is a unary computable function $g \notin \mathcal{B}$. Now consider the following program P.

Input $x \in \mathcal{N}$. If B(self) = 1, Simulate g on input x. Return g(x) if it is defined.

Simulate f on input x.

Return f(x) if it is defined.

Since f and g are computable, so is P. Let e denote the Gödel number of P. Assume B(e) = 1. By definition, this means that $\phi_e \in \mathcal{B}$. But in examining P we see that P simulates g so that $\phi_e = g \notin \mathcal{B}$, a contradiction. Similarly, if B(e) = 0, then $\phi_e \notin \mathcal{B}$. But in this case P simulates f so that $\phi_e = f \in \mathcal{B}$, a contradiction. Therefore, B cannot be decidable.

9. The function $\lfloor x^{1/n} \rfloor$ may be computed as

$$\mu(z \le x)(z^n > x) - 1.$$

10. Function $f(n,x) = \lfloor x^{1/n} \rfloor$ is computable by the previous exercise. Therefore, by the s-m-n theorem, there exists a total computable function k(n) for which $\phi_{k(n)}(x) = \lfloor x^{1/n} \rfloor$. Finally, by Theorem 4, there is an integer n for which

$$\phi_n(x) = \phi_{k(n)}(x) = \lfloor x^{1/n} \rfloor.$$

11. Assume E(x) is decidable, where E(x) = 1 iff $x \in E_x$. Now consider the following program P.

Input $x \in \mathcal{N}$. If E(self) = 1, Loop forever. Return self.

Since E(x) is decidable, P is computable. Let e denote the Gödel number of P. Assume E(e) = 1. By definition, this means that $e \in E_e$, meaning that P returns e on some input x. However, since E(e) = 1, P does not terminate on any input, meaning that $E_e = \emptyset$, a contradiction.

Similarly, if E(e) = 0, then $e \notin E_e$. But in this case P returns e, meaning that $e \in E_e$, a contradiction. Therefore, E(x), i.e. the Self-Output property, is not decidable.

12. Function $f(y, x) = y^{10}$ is primitive recursive, and hence computable. Therefore, by the s-m-n theorem, there exists a total computable function k(y) for which $\phi_{k(y)}(x) = y^{10}$. Finally, by Theorem 4, there is an integer e for which

$$\phi_e(x) = \phi_{k(e)}(x) = e^{10}$$

for all $x \in \mathcal{N}$.

13. Since f(n) is total computable, by Theorem 4 there is an integer n for which $\phi_n(x) = \phi_{f(n)}(x)$ for all $x \in \mathcal{N}$. But the way in which Gödel number f(n) is constructed is such that, whenever $\phi_n(x) = y$ is true, then P_n halts, which in turn implies that $P_{f(n)}$ halts with $\phi_{f(n)}(x) = y + 1$, since $P_{f(n)}$ is the same as P_n , except that in its final instruction it adds 1 to register R_1 . Thus, if $\phi_n(x)$ is defined, then we have $\phi_n(x) = y \neq \phi_{f(n)}(x) = y + 1$. Therefore, we must conclude that $\phi_n(x)$ must always be undefined, meaning that $W_n = \emptyset$.