CECS 528, Homework Assignment 5, Fall 2024, Dr. Ebert

Directions: Please review the Homework section on page 6 of the syllabus including a list of all rules and guidelines for writing and submitting solutions.

Due Date: Friday March 21st as a PDF-file upload to the HW5 Canvas dropbox.

Problems

- 1. Consider the following decision problem which we'll call I. An instance of I is i) a collection T of distinct nonempty subsets (i.e. no two subsets are the same) of $\{1, \ldots, n\}$, for some $n \ge 1$ and ii) a nonnegative integer $k \ge 0$. The problem is to decide if there are k members A_1, \ldots, A_k of T for which $A_i \cap A_j = \emptyset$, for all $1 \le i \le j \le k$. In other words A_1, \ldots, A_k are pairwise disjoint subsets.
 - (a) Show that (T, k) is a positive instance of I, where

 $T = \{\{10, 11\}, \{12, 14, 16\}, \{10, 11, 12\}, \{2, 3, 5, 9, 10, 19\}, \{2, 3, 5, 6\}, \{4, 5,$

 $\{18, 19\}, \{6, 7\}, \{9, 10, 15, 19\}, \{2, 3, 4, 6, 11\}, \{6, 7, 10, 17, 18\}, \{3, 4, 5\}\}$

and k = 4. Provide A_1, \ldots, A_4 . (5 pts)

- (b) An instance of decision problem Half-I is a collection T of distinct subsets of $\{1, \ldots, n\}$, for some $n \ge 1$. The problem is to decide if at least one half of the subsets of T are pairwise disjoint. Provide an efficient mapping reduction $f: I \to Half-I$ from I to Half-I. Prove that your mapping reduction is correct by arguing that, for any possible (T, k), the answer to (T, k) is always the same as the answer for T' = f(T, k). (20 pts)
- 2. An instance of Log Subset Sum (LSS) is a pair (S, t), where t > 0 is a *b*-bit integer and *S* is a set of positive integers for which $|S| = \lfloor \log b \rfloor$. The problem is to decide if there is a subset $A \subseteq S$ whose members sum to *t*. In one or more paragraphs, describe an algorithm that solves the LSS problem in a polynomial number of steps with respect to size paramter *b*. In your analysis of the number of required steps, remember to include the number of steps required to add numbers. Note: writing pseudocode is unnecessary so long as your paragraph(s) clearly describe the main steps of the algorithm. (20 pts)