
Fast Fourier Transform

Last Updated: September 30th, 2023

1 Introduction

Like Strassen’s algorithm, the Fast Fourier Transform (FFT) is considered one of the more suprising
and interesting known divide-and-conquer algorithms. It finds important use in the field of signal
and image processing but is perhaps best understood as a means for efficiently multiplying two
polynomials which we present in this lecture.

2 Review of Complex Numbers

Definition 2.1. A complex number is a number of the form a + bi, where a, b ∈ R are real
numbers, and i =

√
−1. The conjugate of a complex number a+ bi, denoted, a+ bi is the complex

number a− bi.

Definition 2.2. Let a + bi and c + di be complex numbers. Then the following are the defined
operations on complex numbers.

Addition (a+ bi) + (c+ di) = (a+ c) + (b+ d)i

Subtraction (a+ bi)− (c+ di) = (a− c) + (b− d)i

Multiplication (a+ bi) · (c+ di) = (ac− bd) + (ad+ bc)i

Division (a+ bi)/(c+ di) = ac+bd
c2+d2

+ bc−ad
c2+d2

i

The modulus or length of complex number c = a+ bi, denoted |c|, is defined as

|c| = c · c =
√
a2 + b2.

1

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

With this definition we may rewrite division as

c1/c2 =
c1 · c2
|c2|2

,

where c2 ̸= 0.

Proposition 2.3. The following are some identities for complex numbers.

Conjugation When viewed as a function that maps complex number c to c, conjugation may be
viewed as an automorphism over the field of complex numbers:

c1 + c2 = c1 + c2 and c1c2 = c1 · c2.

Euler’s Identity eiθ = cos θ + i sin θ

e2nπi = 1 for all integers n.

2

Administrator
Pencil

Administrator
Pencil

2.1 Roots of Unity

For each j = 0, . . . , n− 1, e
2πij
n is a complex nth root of unity, meaning that

e(
2πij
n

)n = e2πij = cos(2πj) + i sin(2πj) = 1.

Example 2.4. Determine the a) complex 4th roots of unity, and b) complex 6th roots of unity.

Solution.

3

Administrator
Pencil

The next proposition shows that e
2πij
n , j = 0, . . . , n− 1, are the only unique powers of e

2πi
n .

Proposition 2.5. If integers j and k satisfy j ≡ k mod n, then

e
2πij
n = e

2πik
n .

Proof of Proposition. Assume j ≡ k mod n. Then k = nq + j, for some integer q. Then

e
2πik
n = e

2πi(j+nq)
n = e

2πij
n e

2πinq
n = e

2πij
n e2πiq = e

2πij
n · 1 = e

2πij
n .

Proposition 2.5 allows us to define the abelian group whose members are the nth roots of unity, with
multiplication serving as the group addition. In other words,

e
2πij
n · e

2πik
n = e

2πi(j+k)
n .

Moreover, the addition is associative since multiplying two roots of unity is identical to adding the
two integers j and k, and integer addition is associative. Also, 1 is the additive identity, and the

(additive) inverse of e
2πij
n is e

2πi(n−j)
n . Another way of writing the inverse of e

2πij
n is e

−2πij
n . This is

valid, since n− i ≡ −i mod n.

For simplicity, we let ωj
n denote the j th root of unity, and ω−j

n denotes its inverse. In general, for
any integer k, ωk

n is defined as being equal to ωj
n, where j ≡ k mod n.

4

Administrator
Pencil

Example 2.6. For the 6th roots of unity, determine the inverse of each group element, and verify
that (a+ bi)(a+ bi)−1 = 1 through direct multiplication.

5

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Proposition 2.7. The following are some properties of roots of unity.

1. If n is even, then ωj
n and −ωj

n are both roots of unity. In other words, roots of unity come in

additive-inverse pairs. Furthermore, if 0 ≤ j < n/2, then ω
j+n/2
n = −ωj

n.

2. If n is even, then the squares of the nth roots of unity yield the n/2 roots of unity.

Proof of Proposition.

1. By the sum-of-angle formulas for cosine and sine, we have

e(θ+π)i = cos(θ + π) + i sin(θ + π) = − cos θ − sin θi = −eθi.

Therefore,

−ωj
n = e(

2πij
n

+πi) = e(
2πij
n

+
2πi(n/2)

n
) = e

2πi(j+n/2)
n = ωj+(n/2)

n

which is a root of unity.

2. For 0 ≤ j < n/2, we have

(ωj
n)

2 = ω2j
n = e

2πi(2j)
n = e

2πij
n/2 ,

which is an n/2 root of unity. Note also that, for n/2 ≤ j < n, e
2πij
n is just the negative of ωj

n,
and thus its square yields the same n/2 root of unity as its additive-inverse counterpart.

6

Administrator
Pencil

3 Polynomial Multiplication and the Fast Fourier Transform

Given two polynomials
A(x) = a0 + a1x+ · · ·+ adx

d

and
B(x) = b0 + b1x+ · · ·+ bdx

d,

our goal is to compute the product C(x) = A(x)B(x) where C(x) is a degree-2d polynomial whose
k th term ck, k = 0, 1, . . . , d, is computed as

ck =
k∑

i=0

aibk−i.

Thus, using the above formula we see that computing the first d+ 1 coefficients of C(x) requires

1 + 2 + 3 + 4 + · · ·+ d+ (d+ 1) = Θ(d2)

steps.

The following algorithm provides an alternative way to compute C(x).

Alternative Polynomial Multiplication Algorithm

Input: Coefficients of polynomials A(x) and B(x).

Output: Coefficients of C(x) = A(x)B(x).

Pick points: x0, x1, . . . , xn−1, for some n ≥ 2d+ 1.

Evaluate A and B: compute A(x0), . . . , A(xn−1) and B(x0), . . . , B(xn−1).

Evaluate C: compute C(x0) = A(x0)B(x0), . . . , C(xn−1) = A(xn−1)B(xn−1).

Interpolate: determine the unique coefficients c0, c1, . . . , c2d for which, for all i = 0, 1, . . . , n−1,

C(xi) = c0 + c1xi + · · ·+ c2dx
2d
i .

Return c0, c1, . . . , c2d.

On the surface, it appears that this method will also require O(d2) steps, since evaluating a d-
degree polynomial on some input xi generally requires Θ(d) steps via Horner’s algorithm. Moreover,
interpolation also requires O(d2) steps since, as we’ll see, it involves the inverting a 2d×2dVandermonde
matrix. However, by choosing to evaluate A and B with the points 1, ωn, ω

2
n, . . . , ω

n−1
n (i.e. the nth

roots of unity) and evaluating a polynomial via a divide-and-conquer approach, we can reduce the
total number of evaluation and interpolation steps to O(n log n).

7

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

3.1 A Divide and Conquer approach to polynomial evaluation

In what follows we assume that n is a power of two. Consider the polynomial

A(x) = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1.

Then A(x) may be written as
A(x) = Ae(x

2) + xAo(x
2),

where Ae(y) and Ao(y) are the polynomials

Ae(y) = a0 + a2y + a4y
2 + · · ·+ an−2y

n−2
2 ,

and
Ao(y) = a1 + a3y + · · ·+ an−1y

n−2
2 .

Thus, we may evaluate (n− 1)-degree polynomial A(x) by evaluating two (n−2
2
)-degree polynomials

at x2. In other words, we’ve taken the problem and divided it into two subproblems, each of which
is one-half the size.

Now, for a single evaluation A(x), the above divide-and-conquer method does not improve the running
time. In fact, recurrence for the number of steps T (n) is

T (n) = 2T (n/2) + n,

which implies T (n) = Θ(n log n) which is worse than linear! However, suppose instead the problem
is to evaluate n complex points ±x1,±x2, . . . ,±xn

2
consisting of n/2 additive-inverse pairs. Then,

since (−xi)
2 = x2

i , we see that the problem may again be divided into two subproblems, each of size
n/2, and in both cases whose n/2 points that require evaluation are x2

1, . . . , x
2
n
2
. This works so long

as these n/2 squares may be represented as n/4 additive-inverse pairs. Of course, this would not be
possible if these squares were real numbers (since the squares would all be positive), but is possible
if our n points are equal to the nth roots of unity. Let’s check this.

1. By part 1 of Proposition 2.7, since we assume n a power of two, the roots of unity may in

fact be partitioned into additive-inverse pairs, with ωi
n being paired with ω

n
2
+i

n , for all i =
0, 1, . . . , n/2− 1.

2. Moreover, by part two of the same proposition, the squares of the nth roots of unity yield
precisely the n

2
-th roots of unity and, since n/2 ≥ 2 is even, once again these numbers may be

partitioned into additive-inverse pairs. Therefore the two subproblems, (Ae, {x2
1, . . . , x

2
n
2
}) and

(Ao, {x2
1, . . . , x

2
n
2
}) are in fact two (smaller by one half) instances of the original problem.

8

The above divide-and-conquer algorithm leads us to the following definition.

Definition 3.1. Given complex coefficients c0, . . . , cn−1, let p(x) be the polynomial

p(x) =
n−1∑
k=0

ckx
k.

Then the nth order discrete Fourier transform is the function

DFTn(c0, . . . , cn−1) = (y0, . . . , yn−1),

where yj = p(ωj
n), j = 0, . . . , n− 1.

In words the nth order discrete Fourier transform, takes as input the complex coefficients of a degree
n− 1 polynomial p, and returns the n-dimensional vector whose components are the evaluation of p
at each of the nth roots of unity. Another way to write DFTn(c0, . . . , cn−1) is DFTn(p), where p is
the polynomial of degree n− 1 whose coefficients are c0, . . . , cn−1.

9

Administrator
Pencil

Example 3.2. Compute DFT4(0, 1, 2, 3).

10

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

3.2 Fast Fourier Transform

We may now write our divide-and-conquer algorithm in terms of DFTn. In what follows we define

(u1, . . . , un)⊙ (v1, . . . , vn) = (u1v1, . . . , unvn),

which we call the scaling of v with u.

Fast Fourier Transform

Input: polynomial A(x) = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1, where n is a power of two.

Output: DFTn(A).

If n = 1, then return (a0).

Y0 = DFTn
2
(Ae).

Y0 = Y0 ◦ Y0. //Concatenate vector Y0 with itself.

Y1 = DFTn
2
(Ao).

Y1 = Y1 ◦ Y1. //Concatenate vector Y1 with itself.

Y1 = ω⃗n ⊙ Y1. //Scale Y1 with the length-n vector of nth roots of unity.

Return Y0 + Y1. //Return the vector sum of Y0 with Y1.

We see that the running time for FFT is Θ(n log n), since its running time satisfies

T (n) = 2T (n/2) + n.

Thus, we have found a way to evaluate a polynomial at n points using only a log-linear number of
steps!

11

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Example 3.3. Compute DFT4(0, 1, 2, 3) using the FFT algorithm.

Solution.

12

Administrator
Pencil

Administrator
Pencil

4 Solving Interpolation with the Inverse DFT

Returning to the alternative polynomial multiplication algorithm, the FFT algorithm allows us to
compute C(ωj

n), for each j = 0, 1, . . . , n − 1. To finish the algorithm, we must find coefficients
c0, c1, . . . , cn−1 for which, for each j = 0, 1, . . . , n− 1,

C(ωj
n) = c0 + c1ω

j
n + · · ·+ cn−1ω

j(n−1)
n .

Furthermore, we can write these n equations in matrix form as follows.

C(ω0

n)
C(ω1

n)
...

C(ωn−1
n)

 =

1 1 · · · 1

1 ω1
n · · · ω

1(n−1)
n

...
... · · · ...

1 ωn−1
n · · · ω

(n−1)(n−1)
n

c0
c1
c2
...

cn−1

Letting Fn denote the n×n matrix in the above equation, we leave it as an exercise to show that its
inverse is

F−1
n =

1

n

1 1 · · · 1

1 ω−1
n · · · ω

−1(n−1)
n

...
... · · · ...

1 ω
−(n−1)
n · · · ω

−(n−1)(n−1)
n

 .

Thus, we may compute the coefficients of C(x) as
c0
c1
c2
...

cn−1

 =
1

n

1 1 · · · 1

1 ω−1
n · · · ω

−1(n−1)
n

...
... · · · ...

1 ω
−(n−1)
n · · · ω

−(n−1)(n−1)
n

C(ω0
n)

C(ω1
n)

...
C(ωn−1

n)

 .

Thus, for all j = 0, 1, . . . , n− 1, we have

cj =
1

n
(C(ω0

n) + C(ω1
n)ω

−j
n + · · ·+ C(ωn−1

n)ω−j(n−1)
n).

Notice that this equation is essentially the evaluation of polynomial

1

n
(C(ω0

n) + C(ω1
n)x+ · · ·+ C(ωn−1

n)xn−1)

on input x = ω−j
n . This suggests the following definition.

13

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Definition 4.1. Given complex coefficients y0, . . . , yn−1, let p(x) be the polynomial

p(x) =
n−1∑
k=0

ykx
k.

Then the nth order inverse discrete Fourier transform is the function

DFT−1
n (y0, . . . , yn−1) = (c0, . . . , cn−1),

where cj =
1
n
p(ω−j

n), j = 0, . . . , n− 1.

In words the nth order inverse discrete Fourier transform, takes as input the complex coefficients
of a degree n − 1 polynomial p, and returns the n-dimensional vector whose components are the
evaluation of 1

n
p(x) at each of the inverses of the nth roots of unity.

14

Administrator
Pencil

Administrator
Pencil

4.1 The Inverse Fast Fourier Transform

We may provide a similar divide-and-conquer algorithm for computing DFT−1
n which we call the

Inverse Fast Fourier Transform (IFFT).

Inverse Fast Fourier Transform

Input: polynomial A(x) = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1, where n is a power of two.

Output: DFT−1
n (A).

If n = 1, then return (a0).

Y0 = DFT−1
n
2
(Ae).

Y0 = Y0 ◦ Y0. //Concatenate vector Y0 with itself.

Y1 = DFT−1
n
2
(Ao).

Y1 = Y1 ◦ Y1. //Concatenate vector Y1 with itself.

Y1 = ω⃗−1
n ⊙ Y1. //Scale Y1 with the respective inverses of the nth roots of unity.

Return 1
2
(Y0 + Y1). //Return the vector sum of Y0 with Y1.

Notice that in the final line we must scale the vector by 1/2. This is because both DFT−1
n
2
(Ae) and

DFT−1
n
2
(Ao) give the polynomial evaluations divided by n/2. However, we want both to be divided

by n. So we must multiply by n/2 to undo the division by n/2, and then divide by n, which has the
net effect of multiplying by 1/2.

15

Administrator
Pencil

Example 4.2. Compute DFT−1
4 (0, 1,−1, 2) by a) using the definition of DFT−1

4 (0, 1,−1, 2), and b)
using the IFFT algorithm on DFT−1

4 (0, 1,−1, 2).

16

Administrator
Pencil

4.2 Summary

DFTn(p) The discrete Fourier transform that evaluates an (n − 1)-degree polynomial p at each of
the nth roots of unity and returns a vector of these evaluations.

FFT An algorithm for computing DFTn(p) in O(n log n) steps when n is assumed a power of 2.

DFT−1
n (p) The inverse discrete Fourier transform that evaluates an (n− 1)-degree polynomial p at
each multiplicative inverse of each nth root of unity, and returns a vector of these evaluations
scaled by 1

n
. Moreover if the coefficients of p are the values q(ω0

n), q(ω
1
n), . . . , q(ω

n−1
n), for some

(n−1)-degree polynomial q, then DFT−1
n (p) outputs the coefficients of q, meaning that it solves

the problem of polynomial interpolation with respect to q

IFFT An algorithm for computing DFT−1
n (p) in O(n log n) steps when n is assumed a power of 2.

17

Exercises

1. Prove that for any two complex numbers c and d, cd = cd

2. Determine the complex cube roots of unity.

3. Determine the complex 8th roots of unity.

4. For the 8th roots of unity, determine the inverse of each group element, and verify that (a +
bi)(a+ bi)−1 = 1 through direct multiplication.

5. Let n ≥ 1, d > 0, and k be integers. Prove that ωdk
dn = ωk

n. This is called the cancellation
rule.

6. Let n be an even positive integer. Prove that the square of each of the nth roots of unity yields
the n/2 roots of unity. Moreover, each n/2 root of unity is associated with two different squares
of nth roots of unity.

7. Show that ω
n/2
n = −1, for all even n ≥ 2.

8. For positive integer n and for integer j not divisible by n, prove that

n−1∑
k=0

ωjk
n = 0.

Hint: use the geometric series formula

n−1∑
k=0

ak =
an − 1

a− 1
,

which is valid when a is a complex number.

9. Find the equation of the quadratic polynomial whose graph passes through the points (2, 13),
(−1, 10), and (3, 26).

10. Find the equation of the cubic polynomial whose graph passes through the points (0,−1), (1, 0),
(−1,−4), and (2, 5).

11. Compute DFT4(1,−1, 2, 4) using the definition.

12. Compute DFT4(−1, 3, 4, 10) using the definition.

13. Compute DFT−1
4 (0, 0,−4, 0) using the definition.

14. Compute DFT−1
4 (2, 1− i, 0, 1 + i) using the definition.

15. Show the sequence of polynomials that are evaluated when evaluating p(x) = x3− 3x2+5x− 6
using Horner’s algorithm. Use the algorithm to evaluate p(−2).

16. Show the sequence of polynomials that are evaluated when evaluating p(x) = 2x4− x3 +2x2 +
3x− 5 using Horner’s algorithm. Use the algorithm to evaluate p(5).

18

17. Use the FFT algorithm to compute DFT4(1,−1, 2, 4).

18. Use the FFT algorithm to compute DFT4(−1, 3, 4, 10).

19. Compute DFT−1
4 (0, 0,−4, 0) using the definition.

20. Compute DFT−1
4 (2, 1− i, 0, 1 + i) using the definition.

21. Use the IFFT algorithm to compute DFT−1
4 (0, 0,−4, 0).

22. Use the IFFT algorithm to compute DFT−1
4 (2, 1− i, 0, 1 + i).

Exercise Solutions

1. Let c = a+ bi, and d = e+ fi. Then

cd = (ae− bf) + i(af + be) = (ae− bf)− i(af + be).

On the other hand,

overlinecd = (a− bi)(e− fi) = (ae− bf) + i(−af − be) = (ae− bf)− i(af + be),

which proves the claim.

2. For j = 0,

e
(2π)(0)i

3 = 1.

For j = 1,

e
2πi
3 = −1/2 +

√
3i

2
.

For j = 2,

e
4πi
3 = −1/2−

√
3i

2
.

3. For j = 0,

e
(2π)(0)i

3 = 1.

For j = 1,

e
πi
4 =

√
2

2
+

√
2i

2
.

For j = 2,

e
πi
2 = i.

For j = 3,

e
3πi
4 =

−
√
2

2
+

√
2i

2
.

For j = 4,
eπi = −1.

19

For j = 5,

e
5πi
4 =

−
√
2

2
+
−
√
2i

2
.

For j = 6,

e
3πi
2 = −i.

For j = 7,

e
7πi
4 =

√
2

2
+
−
√
2i

2
.

4. For example, ω2
8 = i while ω−2

8 = ω6
8 = −i, since (i)(−i) = 1. Similarly, ω4

8 = −1 while
ω−4
8 = ω4

8 = −1, since (−1)(−1) = 1.

5. By definition,

ωdk
dn = e

2πidk
dn = e

2πik
n = ωk

n.

6. For j = 0, . . . , n− 1,
(ωj

n)
2 = ωj

nω
j
n = ω2j

n = ωj
n/2,

where the last equality is due to the cancellation rule from Exercise 5. Thus the square of an
nth root of unity is indeed an n/2 root of unity. Moreover, notice that j ranges from 0 to n−1.
By definition, when j ranges from 0 to n/2− 1, we obtain each n/2 root of unity. Then, due to
the cyclic nature of the roots unity, when j ranges from n/2 to n−1, we once again obtain each
n/2 root of unity. Therefore, each n/2 root of unity ωj

n/2 is the square of exactly two different

nth-roots of unity, namely (ωj
n/2)

2 and (ω
j+n/2
n/2)2.

7. We have, for even n ≥ 2,

ωn/2
n = e(2πi/n)n/2 = eπi = cosπ + i sin π = −1.

8. Using the geometric series formula

n−1∑
k=0

ak =
an − 1

a− 1
,

we have
n−1∑
k=0

(ωj
n)

k =
n−1∑
k=0

ωjk
n =

ωjn
n − 1

ωj
n − 1

=
ωj
1 − 1

ωj
n − 1

=
1− 1

ωj
n − 1

= 0,

where the first equality is due to the cancellation rule, and the 2nd to last equality is due to
the fact that ω1

1 = 1. Notice also that the denominator is not equal to zero, since we assumed
j is not divisible by n; i.e. j ̸≡ 0 mod n.

9. We desire a polynomial of the form c0+c1x+c2x
2. The three points imply the following system

of equations.
c0 + 2c1 + 4c2 = 13

c0 − c1 + c2 = 10

c0 + 3c1 + 9c2 = 26

Solving this system gives the polynomial 5− 2x+ 3x2.

20

10. We desire a polynomial of the form c0 + c1x+ c2x
2 + c3x

3. The four points imply the following
system of equations.

c0 = −1

c0 + c1 + c2 + c3 = 0

c0 − c1 + c2 − c3 = −4

c0 + 2c1 + 4c2 + 8c3 = 5

Solving this system gives the polynomial −1 + x− x2 + x3.

11. DFT4(1,−1, 2, 4) = (6,−1− 5i, 0,−1 + 5i)

12. DFT4(−1, 3, 4, 10) = (16,−5− 7i,−10,−5 + 7i)

13. DFT−1
4 (0, 0,−4, 0) = (−1, 1,−1, 1)

14. DFT−1
4 (2, 1− i, 0, 1 + i) = (1, 0, 0, 1)

15. p0(x) = 1, p1(x) = xp0(x)− 3 = x− 3, p2(x) = xp1(x) + 5 = x2 − 3x+ 5, p3(x) = xp2(x)− 6 =
x3 − 3x2 + 5x − 6. p0(−2) = 1, p1(−2) = −2(1) − 3 = −5, p2(−2) = −2(−5) + 5 = 15,
p3(−2) = −2(15)− 6 = −36.

16. p0(x) = 2, p1(x) = xp0(x)− 1 = 2x− 1, p2(x) = xp1(x)+ 2 = 2x2−x+2, p3(x) = xp2(x)+ 3 =
2x3−x2+2x+3, p4(x) = xp3(x)−5 = 2x4−x3+2x2+3x−5. p0(5) = 2, p1(5) = 5(2)−1 = 9,
p2(5) = 5(9) + 2 = 47, p3(5) = 5(47) + 3 = 238, p4(5) = 5(238)− 5 = 1185.

17. p0(x) = 1 + 2x, DFT2(1 + 2x) = (3,−1). Thus,

Y0 = (3,−1, 3,−1).

Also, p1(x) = −1 + 4x, and DFT2(−1 + 4x) = (3,−5). Thus,

Y1 = (3,−5, 3,−5).

Furthermore, Y1j ← ωj
4Y1j gives

Y1 = (3,−5i,−3, 5i).

Finally, DFT4(1,−1, 2, 4) = Y0 + Y1 = (6,−1− 5i, 0,−1 + 5i).

18. p0(x) = −1 + 4x, DFT2(−1 + 4x) = (3,−5). Thus,

Y0 = (3,−5, 3,−5).

Also, p1(x) = 3 + 10x, and DFT2(3 + 10x) = (13,−7). Thus,

Y1 = (13,−7, 13,−7).

Furthermore, Y1j ← ωj
4Y1j gives

Y1 = (13,−7i,−13, 7i).

Finally, DFT4(−1, 3, 4, 10) = Y0 + Y1 = (16,−5− 7i,−10,−5 + 7i).

21

19. Input (0, 0,−4, 0) corresponds with polynomial p(x) = −4x2. Moreover,

p(ω
(−1)(0)
4) = p(1) = −4,

p(ω−1
4) = p(−i) = 4,

p(ω−2
4) = p(−1) = −4,

and
p(ω−3

4) = p(i) = 4.

Thus,

DFT−1
4 (0, 0,−4, 0) = 1

4
(−4, 4,−4, 4) = (−1, 1,−1, 1),

and so DFT−1
4 (0, 0,−4, 0) = (−1, 1,−1, 1), which corresponds with polynomial −1+x−x2+x3.

20. Input (2, 1− i, 0, 1+ i) corresponds with polynomial p(x) = 2+ (1− i)x+ (1+ i)x3. Moreover,

p(ω
(−1)(0)
4) = p(1) = 4,

p(ω−1
4) = p(−i) = 0,

p(ω−2
4) = p(−1) = 0,

and
p(ω−3

4) = p(i) = 4.

Thus, DFT−1
4 (2, 1− i, 0, 1 + i) = (1, 0, 0, 1),, which corresponds with polynomial 1 + x3.

21. p0(x) = −4x, DFT−1
2 (−4x) = 1

2
(−4, 4) = (−2, 2). Thus,

C0 = (−2, 2,−2, 2).

Also, p1(x) = 0, and DFT−1
2 (0) = (0, 0). Thus,

C1 = (0, 0, 0, 0).

Furthermore, C1j ← ω−j
4 C1j gives

C1 = (0, 0, 0, 0).

Finally, DFT−1
4 (0, 0,−4, 0) = 1

2
(C0 + C1) =

1
2
(−2, 2,−2, 2) = (−1, 1,−1, 1), which corresponds

with polynomial −1 + x− x2 + x3.

22. p0(x) = 2, DFT−1
2 (2) = 1

2
(2, 2) = (1, 1). Thus,

C0 = (1, 1, 1, 1).

Also, p1(x) = (1− i) + (1 + i)x, and DFT−1
2 ((1− i) + (1 + i)x) = 1

2
(2,−2i) = (1,−i). Thus,

C1 = (1,−i, 1,−i).

Furthermore, C1j ← ω−j
4 C1j gives

C1 = (1,−1,−1, 1).

Finally, DFT−1
4 (2, 1− i, 0, 1+ i) = 1

2
(C0+C1) = (1, 0, 0, 1), which corresponds with polynomial

1 + x3.

22

