
Logic Problems Both Easy and Hard

Last Updated: January 21st, 2026

1 Introduction

We begin this lecture by first reviewing set, function, and (propositional) logic notation. This notation
will be used throughout the course and the ability to read, comprehend, and write this notation is
essential for success in the course.

We then introduce the graph decision problem Reachable as well as the 2SAT and 3SAT logic decision
problems. We show how to reduce the 2SAT problem to the Reachable problem, thus making 2SAT

decidable in a linear number of steps. We then provide some intuition for why most computer
scientists agree that 3SAT cannot be solved in a polynomial number of steps.

1

2 Sets

Definition 2.1. A set represents a collection of items, where each item is called a member or
element of the set.

List Notation the most common way to represent a set is to list the set members one-by-one, and
delimit the list with curly braces.

For example,
{2, 3, 5, 7, 11}

uses list notation to describe the set consisting of all prime numbers that do not exceed 11. Note
that the order in which the members are listed does not matter. Indeed the sets {2, 3, 5, 7, 11}
and {3, 11, 5, 2, 7} are two different ways of writing the same set. Also, each member occurs
only once in the set, meaning that no item can be listed more than once. Note: a multiset
is a set for which each member may occur more than once. When using list notation to write
a multiset, then we list an item a number of times that is equal to its number of occurrences
in the set. For example, {1, 2, 2, 3, 3, 3} is a multiset for which 1 occurs once, 2 occurs twice, 3
occurs thrice.

Informal List Notation uses ellipsis . . . to indicate that a pattern is to be continued in the list,
either indefinitely or up to some value.

Common Numerical Sets

Natural Numbers N = {0, 1, 2, . . .}
Integers I = {0,±1,±2, . . .} = {. . . ,−2,−1, 0, 1, 2, . . .}

Empty Set the set having no members and denoted by ∅.

Membership Symbol x ∈ A indicates that item x is a member of set A, while x ̸∈ A means that
x is not a member of A.

Containment Symbol A ⊆ B means that A is a subset of B. In other words, every member of
A is also a member of B. Note: trivially, ∅ ⊆ B for every set B, but A ⊆ ∅ is only true when
A = ∅.

Proper Containment Symbol A ⊂ B means that A is a proper subset of B, meaning that
there is some member of B that is not a member of A. For example, N ⊂ Q since there is a
rational number, e.g. 1

2
, that is not an natural number. Similarly,

N ⊂ I ⊂ Q.

Set Equality A = B iff A ⊆ B and B ⊆ A are both true statements.

Set Cardinality |A| denotes the number of items of A. We also refer to |A| as the size of A. Note:
|N | = |I| = |Q| =∞.

2

Powerset of a set A, denoted P(A), is the set consisting of all subsets of A. For example, if
A = {1, 2, 3}, then

P(A) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

3

Example 2.2. Which of the following are true statements?

The following are all true statements.

a. 63 ∈ {2, 3, 5, 7, 11, . . . , 97}

b. 39 ̸∈ {2, 3, 5, 7, 11, . . . , 97}

c. {3} ∈ {∅, {1}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}

d. 3 ∈ {∅, {1}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}

e. {7, 23, 59} ⊂ {2, 3, 5, 7, 11, . . . , 97}

f. {7, 23, 59} ̸⊆ {2, 3, 5, 7, 11, . . . , 97}

g. {3} ∈ {∅, {1}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}

h. {3} ⊂ {∅, {1}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}

i. |{∅}| = 0

j. |∅| = 0

k. |{∅, {1}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}| = 6

4

3 Functions

Definition 3.1. A function f : A→ B is a set A, a set B, and rule that assigns each member a ∈ A
to exactly one member b ∈ B. We write this as f(a) = b.

Some terminology related to function f : A→ B

Function Name f is an identifier that names the function

Domain set A is the set of inputs that get assigned by f

Co-Domain set B is the set of possible outputs to which an input can be assigned by f . Simply
put, a ∈ A is the input and f(a) = b ∈ B is the output associated with a.

5

Administrator
Pencil

Example 3.2. Consider the sequence of numbers 24, 43, 87, 86, 68, 62, 51, 17 and the function

order : A→ B,

where A = {17, 24, 43, 51, 62, 68, 86, 87}, B = {1, 2, 3, 4, 5, 6, 7, 8}, and order(x) equals the order that
x appears in the above sequence. Provide a function table that shows the correspondence between
each input x and its corresponding output order(x) for every x ∈ A.

6

Administrator
Pencil

Administrator
Pencil

4 Propositional Logic

4.1 Boolean Variables and Assignments

Boolean Variable A variable is said to be Boolean iff its domain equals {0, 1}. We use lowercase
letters, such as x, y, z, x1, x2, . . ., etc., to denote a Boolean variable.

Assignment An assignment over a set of V of Boolean variables is a function α : V → {0, 1} that
assigns to each variable x ∈ V a value in {0, 1}. We may represent α using function notation,
or as a labeled tuple.

Example: for the assignment α that assigns 1 to both x1 and x2, and 0 to x3, we may use
function notation and write α(x1) = 1, α(x2) = 1, and α(x3) = 0, or we may use tuple notation
and write

α = (x1 = 1, x2 = 1, x3 = 0),

or
α = (1, 1, 0),

if the associated variables are understood.

Variable Negation If x is a Boolean variable, then x is called its negation.

Example: Suppose assignment α satisfies α(x1) = 0. Then (extending α to include negation
inputs) α(x1) = 1.

Literal A literal is either a variable or the negation of a variable .

Example: x1, x3, x3, are x5 all examples of literals.

Consistent A set R of literals is said to be consistent iff no variable and its negation are both in
R. Otherwise, R is said to be inconsistent.

Example: {x1, x2, x4, x7, x9} is a consistent set, but {x1, x2, x4, x7, x7} is an inconsistent set.

Induced Assignment If R = {l1, . . . , ln} is a consistent set of literals, then αR is called the
(partial) assignment induced by R and is defined as αR(x) = 1 if x ∈ R, αR(x) = 0
if x ∈ R, and αR(x) is undefined for any for which x, x ̸∈ R.

Example: the assignment induced by R = {x1, x2, x4, x7, x9} is

αR = (x1 = 1, x2 = 0, x4 = 1, x7 = 0, x9 = 0).

7

Administrator
Pencil

4.2 Logical Operations

Connective Symbol Example
NOT “It is not raining outside.”
AND ∧ “It is raining and the sidewalk is wet.”
OR (Inclusive) ∨ “You may board with either a passport or state-issued ID.”
OR (Exclusive) ⊕ “He was born in either Phoenix or Tuscon.”
IF-THEN → “If it rains then the sidewalk gets wet.”
EQUIVALENCE ↔ “Passing the exam is equivalent to scoring at least 75 points.”

4.3 Truth Tables

Each logical operation may be formally defined as a function that takes one or two Boolean values
as input, and outputs a Boolean value. Below are function tables (also called truth tables) for each
of the operations.

x x
0 1
1 0

x y x ∧ y
0 0 0
0 1 0
1 0 0
1 1 1

x y x ∨ y
0 0 0
0 1 1
1 0 1
1 1 1

x y x⊕ y
0 0 0
0 1 1
1 0 1
1 1 0

8

x y x→ y
0 0 1
0 1 1
1 0 0
1 1 1

x y x↔ y
0 0 1
0 1 0
1 0 0
1 1 1

We now comment on the x→ y truth table.

1. x being true is a cause for y to be true. Hence 1→ 1 is true, while 1→ 0 is false.

2. However, if x = 0 then it is OK if either y = 0 or y = 1.

3. Example: if x evaluates the truth of the statement “it is raining”, and y evaluates “the sidewalk
is wet”, then 0→ 0 is true since it is common for a sidewalk to be dry when it is not raining.
Furthermore, 0 → 1 is also true, since it might not be raining, but the sprinklers could be
getting the sidewalk wet.

4. Therefore, x→ y means that x = 1 causes y = 1, but it may not be the only possible cause.

9

Administrator
Pencil

Definition 4.1. Similar to an arithmetic expression that uses variables, numbers, parentheses, and
the set of operations A = {+,−,×,÷, mod }, a Boolean expression, also referred to as a Boolean
formula, is the same as an arithmetic expression, but with numbers replaced with Boolean values,
and A replaced with B = { ,∧,∨,⊕,→,↔}.

Example 4.2. Show some examples of both arithmetic and Boolean expressions.

10

Administrator
Pencil

Administrator
Pencil

5 Computational Problems

Informally, when we think of a problem, we think of a situation that needs to be resolved (i.e. solved).
Moreover, in computer science we think of a computing problem as having the following properties.

Definition 5.1. A computing problem is a collection of situations that share a common theme,
and each of which requires a solution.

� Each situation is referred to as a problem instance, and represents a concrete example of the
general problem.

� Each problem instance can be represented by a unique word over some alphabet, meaning that
no two instances map to the same word. The word may then be encoded into a binary word
so that the problem instance can be stored in computer memory.

Three types of computational problems in relation to this course

Decision The solution to a problem instance is either Yes or No, equivalently True (1) or False
(0). An instance x for which the solution is 1 (respectively, 0) is called a positive instance
(respectively, negative instance).

Optimization The solution to a problem instance x is a number that represents the greatest (or
least) quantity of some entity that is associated with x

Miscellaneous Any computation problem that is neither a decision nor an optimization problem

11

Administrator
Pencil

Example 5.2. For each of the following problems, determine if it is a decision, optimization, or
miscellaneious problem.

a. An instance of the Prime problem is a natural number n ≥ 0, and the problem is to decide if
n is a prime number, meaning that its only natural divisors are 1 and n.

b. An instance of the Maximum Subsequence Sum (MSS) is a sequence (array) a of integers. The
problem is to determine the greatest sum that can be made by any subsequence of a. For
example, determine the maximum subsequence sum for any subsequence of

3,−4, 2, 5,−2,−4, 0, 2, 3,−2, 1.

c. An instance of Sort is an array a of integers. The problem is to produce another array b whose
members are the members of a, but in sorted order.

d. An instance of Fallible is a Boolean formula F . Is there an assignment that can be made to
the variables of F so that F evaluates to 0? For example, given the logical formula F (x, y) =
x→ (y → x), can x and y be assigned Boolean values that force F to evaluate to 0?

Problems as Sets

Notice that every problem is given a name consisting of one or more words along with an associated
acronym if necessary. We often write a problem’s name to represent the set of all problem instances.
For example,

f : Sort→ {0, 1}

is a function whose inputs are instances of problem Sort, and whose outputs are 0 or 1. For example,
we may define f(a) = 1 iff integer array a is a sorted array, and f(a) = 0 otherwise.

12

Administrator
Pencil

6 The Reachability problem

Recall that a graph is a pair of sets G = (V,E), where V is called the vertex set and E is called
the edge set, and the members of E are pairs of vertices (see the example below).

Definition 6.1. An instance of the Reachability decision problem is a graph G = (V,E) and
vertices u, v ∈ V , and the problem is decide if there is a path in G from u to v. In other words, is
there a sequence of vertices

P = v0, v1, . . . , vk

for which u = v0, v = vk, and (vi, vi+1) ∈ E for every i ∈ {0, 1, . . . , i}?

Reachability Algorithm

Input: G = (V,E), u, v ∈ V .

Output: true iff there is a path from u to v.

If u = v, then return true.

Initialize FIFO queue Q with u: Q← (u).

Mark u as having been reached.

While Q ̸= ()

Remove vertex w from the front of Q: Q← Q−Q[0].

For each edge (w, x) ∈ E

If x is unmarked, then mark x and enter x into Q: Q← Q+ (x).

If v is marked, then return true.

Return false.

13

Administrator
Pencil

Theorem 6.2. The Reachability Algorithm is correct and has the stated running time equal to
O(m+ n).

Proof. We claim that, for all i ≥ 0, if there is a path from u to x having length i, then x gets marked
during the algorithm.

Basis step. Assume i = 0. Then necessarily x = u which gets marked before entering the while

loop.

Inductive step. Assume the claim is true for some i ≥ 0. Consider a path from u to x having
length i + 1. Let w be the vertex that immediately precedes x in the path. Then there is a path
from u to w having length i. By the inductive assumption, vertex w gets marked and added to Q.
Thus, there will be a step in the algorithm where w is removed from Q and edge (w, x) ∈ E will be
examined. At this point x gets marked in case it has yet to be marked.

The above inductive proof shows that, if v is reachable from u, then the algorithm returns true,
since there is a path from u to v. Conversely, we leave it as an exercise to prove that, if a vertex gets
marked during the algorithm, then that vertex must be reachable from u (hint: use induction).

Running Time. To see that the algorithm runs in linear time, notice that the while loop requires
at most n iterations and, assuming an undirected graph, each edge (w, x) in G must be considered
at most twice: once if w is removed from Q, and a second time if x is removed from Q. Thus, the
total number of steps equals O(2m+ n) = O(m+ n).

14

Recall that graphs come in two different flavors: directed and undireced. Given graph G = (V,E), G
is said to be directed iff each edge (u, v) ∈ E is oriented “from u to v”, meaning that any path that
traverses (u, v) must first move to u, followed by moving to v. Directed edges are often drawn using
arrows, where the arrow points to v from u (see next example). On the other hand, G is said to be
undirected if there is no such ordering placed on the vertices. In other words, a path that traverses
(u, v) may either first visit u followed by v, or vice versa. Thus undirected graphs have bidirectional
edges with no arrows. Finally, an undirected graph is said to be simple provided there is at most
one edge between any two vertices, and there are not self loops, i.e. edges of the form (u, u).

Example 6.3. Show the contents of the queue Q during the execution of the above algorithm on
the directed graph G = (V,E), where

V = {a, b, c, d, e, f, g, h}

and the edges are given by

E = {(a, b), (a, c), (b, c), (b, d), (b, e), (b, g), (c, g), (c, f),

(d, f), (f, g), (f, h), (g, h)}.

Decide if h is reachable from a.

15

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

7 The 2SAT decision problem

Definition 7.1. A binary disjunctive clause is a Boolean formula of the form

l1 ∨ l2,

where l1 and l2 are literals. The clause evaluates to 1 in case either l1 or l2 (or both) is assigned 1.

Definition 7.2. An instance of the 2SAT decision problem consists of a set C of binary disjunctive
clauses. The problem is to decide if there is an assignment α over the variables in C, such that every
clause (l1 ∨ l2) in C evaluates to 1 under α. If such an assignment α exists, then it is said to be
a satisfying assignment and we say C is satisfiable. Otherwise, C is said to be unsatisfiable.
Finally, the 2SAT decision problem is the problem of deciding whether a set C of clauses is sastisfiable.

Simplified clause notation. In what follows, we often simplify the clause notation by writing each
clause (l1 ∨ l2) as (l1, l2).

16

Administrator
Pencil

Example 7.3. Provide a satisfying assignment for

C = {(x2, x3), (x1, x2), (x3, x4), (x2, x3), (x1, x4)}.

17

Administrator
Pencil

We now demonstrate how to “reduce” 2SAT to Reachability, meaning that we can solve an instance
of 2SAT by constructing a graph and examining the “reachability sets” for the vertices of the graph.

Definition 7.4. Let C be an instance of 2SAT, and defined over the variables x1, x2, . . . , xn. Then
the implication graph of C is defined as the directed graph GC = (V,E), where

V = {x1, x2, . . . , xn, x1, x2, . . . , xn}

and each clause (l1 ∨ l2) produces the two directed edges (l1, l2), (l2, l1) ∈ E.

The idea behind the two edges formed from clause c = (l1 ∨ l2) is that c is logically equivalent to
both the implication l1 → l2 and its contrapositive l2 → l1. Thus, for each edge (l1, l2) of GC, when
l1 is assumed true, then l2 must also be true. This is so because (l1, l2) corresponds with the clause
(l1 ∨ l2) and the truth of l1 forces the truth of l2, since, according to the clause, either l1 must be
false or l2 must be true.

18

Administrator
Pencil

Example 7.5. Verify that l1 ∨ l2 is logically equivalent to both l1 → l2 and l2 → l1, meaning that
all three have the same truth table.

Solution.

19

Administrator
Pencil

Example 7.6. Draw the implication graph for the set C of clauses listed in the following table.

Clause Implication Contrapositive
(x2, x4) x2 → x4 x4 → x2

(x2, x3) x2 → x3 x3 → x2

(x2, x3) x2 → x3 x3 → x2

(x2, x3) x2 → x3 x3 → x2

(x2, x4) x2 → x4 x4 → x2

(x1, x4) x1 → x4 x4 → x1

x1 x2 x3 x4

x1 x2 x3 x4

Implication Graph GC

20

Administrator
Pencil

Given the correspondence of a 2SAT instance C with an implication graph GC whose number of vertices
is twice the number n of variables, and whose number of edges is twice the number m of clauses, it
seems appropriate to let m = |C| and n represent the size parameters for 2SAT.

Proposition 7.7. Given implication graph GC and path

P = l1, . . . , ln,

in GC, there is another path, called the contrapositive of P :

P = ln, . . . , l1.

Proof. If (x, y) is an edge of GC, then so is its contrapositive (y, x), since both are logically equivalent
to x∨ y. Thus, every edge in a path P = l1, l2, . . . , ln−1, ln corresponds with its contrapositive in the
path P = ln, ln−1, . . . , l2, l1, and thus both P and P are paths of GC.

Example 7.8. Given the path P = x1, x4, x2, x3 with respect to the implication graph GC below,
verify that P is also in GC.

x1 x2 x3 x4

x1 x2 x3 x4

Implication Graph GC

21

Administrator
Pencil

Administrator
Pencil

Theorem 7.9. 2SAT instance C is satisfiable iff every cycle in GC is consistent, meaning that, if C
is any cycle in GC, then the set of literals that comprises the vertices of C is consistent.

Before proving Theorem 7.9, we use it to provide an initial algorithm showing that 2SAT can be
polynomial-time reduced to Reachability by calling the Reachability algorithm at most 2n times.
The algorithm uses the observation that GC has only consistent cycles iff, for every variable x, either
x is not reachable from x, or x is not reachable from x (or both). For each x, this can be done with
two queries to a Reachability-oracle.

2SAT Algorithm

Input: 2SAT instance C.

Ouput: true iff C is satisfiable.

Construct GC.

For each x ∈ var(C),

If reachable(GC, x, x) and reachable(GC, x, x), then return false.

Return true.

22

Administrator
Pencil

Example 7.10. Consider a 2SAT instance C for which GC has the inconsistent cycle

C = x1, x3, x5, x1, x2, x1.

Verify that C is unsatisfiable.

23

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

We can generalize the previous example by stating the following proposition.

Proposition 7.11. Given a 2SAT instance C that includes variable x, the following statements are
true.

1. If there is a path from x to x then no assignment that assigns x = 1 can satisfy C.

2. If there is a path from x to x then no assignment that assigns x = 0 can satisfy C.

24

Administrator
Pencil

Administrator
Pencil

Proposition 7.14 below provides the key to finding a satisfying assignment for 2SAT instance C in case
all of GC’s cycles are consistent. It relies on the notion of a reachability set for a graph vertex.

Definition 7.12. Let G = (V,E) be a graph and v ∈ V a vertex of G. Then the reachability set
of v in G is the set of all vertices that can be reached by v along some path (regardless of its length).

Example 7.13. Verify that the reachability set for vertex x2 of the implication graph in Example 7.6
is equal to

Rx2 = {x2, x3, x3, x4, x2, x1}.

Is Rx2 a consistent or inconsistent set of literals?

x1 x2 x3 x4

x1 x2 x3 x4

25

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Proposition 7.14. Given 2SAT instance C, implication graph GC, and vertex/literal l, if Rl, the
following statements are true.

1. If Rl is an inconsistent set of literals, then no assignment that assigns l = 1 can satisfy C.

2. If Rl is a consistent set of literals, then assignment αRl
satisfies every clause in C that depends

on at least one variable assigned by αRl
.

Proof of Statement 1.

A. Since Rl is inconsistent, There is a variable x for which both x and x belong to Rl.

B. Let P = l, l1, . . . , lr, x be a path from l to x.

C. Let Q = l, l′1, . . . , l
′
s, x be a path from l to x.

D. Then P ◦Q = l, l1, . . . , lr, x, l′s, . . . , l
′
1, l is a path from l to l.

E. Therefore, by Propostion 7.11, no assignment that assigns l = 1 can satisfy C.

Proof of Statement 2.

A. Without loss of generality, we assume that x is a variable that is reachable from l (a similar
argument can be made by assuming x is reachable from l).

B. Consider any clause c = (x ∨ l′), where l′ is some literal. Then, since x ∈ Rl, αRl
(x) = 1 and c

is satisfied.

C. Now consider any clause c = (x ∨ l′), where again l′ is some literal. Notice that (x, l′) is an
edge of GC. Hence, since x is reachable from l, l′ is also reachable from l. Thus, since l′ ∈ Rl,
αRl

(l′) = 1 and c is satisfied.

D. Therefore, so long as a clause c has either a variable or its negation that is reachable from l,
then c will be satisfied by αRl

and αRl
represents a partial satisfying assignment for C.

26

Administrator
Pencil

Example 7.15. For the implication graph below, verify that the reachability set for vertex x1 contains
both x2 and x2, and so Rx1 is an inconsistent reachability set which means that no assignment with
x1 = 0 can satisfy C.

x1 x2 x3 x4

x1 x2 x3 x4

27

Example 7.16. Verify that the reachability set for vertex x4 of the implication graph in Example 7.6
is equal to the consistent set

Rx4 = {x4, x1},

and show that αRx4
satisfies all clauses of C that use one of the variables from Rx4 .

Clause Implication Contrapositive
(x2, x4) x2 → x4 x4 → x2

(x2, x3) x2 → x3 x3 → x2

(x2, x3) x2 → x3 x3 → x2

(x2, x3) x2 → x3 x3 → x2

(x2, x4) x2 → x4 x4 → x2

(x1, x4) x1 → x4 x4 → x1

x1 x2 x3 x4

x1 x2 x3 x4

28

Administrator
Pencil

Proof of Theorem 7.9. The statement of the theorem is of the form P ↔ Q, where

1. P stands for “C is satisfiable”

2. Q stands “GC has only consistent cycles”.

3. Thus, We can thus prove the two mathematical statements: P → Q and Q→ P .

Proving P → Q

1. We use an indirect proof by proving the contrapositive of P → Q, namely Q→ P .

2. Assume Q: GC has at least one inconsistent cycle.

3. Then there is a variable x in the cycle for which there is a path from x to x as well as a path
from x to x.

4. Then both Rx and Rx are inconsistent reachcability sets.

5. Hence, by Proposition 7.14, there is no truth assignment that will satisfy C.

6. Therefore, P is true namely that C is unsatisfiable.

29

Proof of Theorem 7.9 Continued.

Proving Q→ P

1. Assume Q: GC has only consistent cycles.

2. To prove P : “C is satisfiable” we use mathematical induction on the number of variables n
that appear in one or more of the clauses of C.

3. Basis Step. n = 0, i.e. C = ∅. Then C is satisfiable. Why? It helps to reframe the definition
of satisfiability as “there is some assignment α for which no clause is unsatisified by α”. This
definition is equivalent to the one given Definition 7.2 when C ̸= ∅. Moreover, using this restated
definition, C = ∅ implies that C is satisfiable since the empty assignment α = () is a variable
assignment for which no clause of C is unsatisfied by α (because C has no clauses!).

4. Induction Step. Assume that any 2SAT instance having n − 1 or fewer variables and only
consistent cycles in its implication graph is satisfiable, for some n ≥ 1. Let C be a 2SAT instance
with n variables and only consistent cycles. We show that C must also be satisfiable.

5. Let x be a variable of C. Then by assumption is must be true that either there is no path from
x to x in GC or there is no path from x to x. Without loss of generality, assume that there is
no path from x to x.

6. Then Rx must be a consistent set of literals. Otherwise, as was shown in the proof of
Proposition 7.14, x would be a member of Rx which we’ve assumed is not the case.

7. Moreover, Proposition 7.14 also implies that αRx satisfies every clause that has a variable that
gets assigned by αRx , including x.

8. Let CRx denote the set of clauses satisfied by αRx and consider the new 2SAT instance C ′ =
C − CRx that is the result of removing the clauses in CRl

from C.

9. Then C ′ has fewer than n variables, and since G′
C is a subgraph of GC, it follows that G

′
C has

only consistent cycles.

10. Hence, by the inductive assumption, C ′ is satisfiable.

11. Let α′ denote a satisfying assignment for C ′, then α′ ∪ αRx satisfies C.

12. Therefore C is satisfiable.

30

The proof of Theorem 7.9 suggests the following recursive algorithm for determining the satisfiability
of 2SAT instance C. The algorithm returns a non-empty satisfying assignment if C is satisfiable, and
returns ∅ otherwise. In the algorithm we assume that the variables appearing in the root problem
are indexed as x1, . . . , xn, for some n ≥ 1.

Improved 2SAT Algorithm

Name: improved 2sat

Input: 2SAT instance C and a pointer α to an assignment (initially, ∅).

Output: true iff C is satisfiable.

Side Effect: if C is satisfiable, then α points to a sat assignment. Otherwise, α← ∅.

//Base Case:

If C = ∅, return true. //an empty set of clauses is considered satisfied

//Recursive case:

Construct GC.

Let i be the least index for which xi is a variable of C.

S ← ∅ //S is the desired set of consistent literals and initialized as empty

If Rxi
is a consistent reachability set, then S ← Rxi

.

If S = ∅ and Rxi
is a consistent reachability set, then S ← Rxi

.

If S = ∅

α← ∅.
Return false.

//S ̸= ∅

Update α: α← α ∪ αS.

C ′ ← C − CS, where CS denotes all clauses satisfied by αS.

Return improved 2sat(C ′, α).

Notice that the algorithm requires O(m + n) steps since every edge of GC is traversed at most once
when using the reachability algorithm to compute either Rxi

or Rxi
.

31

Example 7.17. Use the improved 2SAT algorithm to determine a satisfying assignment for

C = {(x2, x3), (x1, x2), (x3, x4), (x2, x3), (x1, x4), (x5, x6), (x5, x6), (x1, x6)}.

Start off by choosing l = x1.

Solution.

1. Compute the edges for GC.

Clause Edges
(x2, x3) x2 → x3, x3 → x2

(x1, x2) x1 → x2, x2 → x1

(x3, x4) x3 → x4, x4 → x3

(x2, x3) x2 → x3, x3 → x2

(x1, x4) x1 → x4, x4 → x1

(x5, x6) x5 → x6, x6 → x5

(x5, x6) x5 → x6, x6 → x5

(x1, x6) x1 → x6, x6 → x1

2. Draw the implication graph

x1 x2 x3 x4 x5 x6

x1 x2 x3 x4 x5 x6

3. Compute Rx1 = {x1, x1, x2, x2, x3, x3, x4, x4, x5, x6} which is inconsistent.

4. Compute Rx1 = {x1, x2, x3, x4} which is consistent. Verify that

αRx1
= (x1 = 0, x2 = 0, x3 = 0, x4 = 1)

satisfies all clauses that involve variables x1, x2, x3, x4.

32

5. Draw the reduced implication graph GC′ where C ′ = {(x5, x6), (x5, x6)}.

x5 x6

x5 x6

6. Compute Rx5 = {x5, x6} which is consistent. Verify that αRx5
= (x5 = 1, x6 = 0) satisfies both

clauses in C ′.

7. Final satisfying assignment:

α = αRx1
∪ αRx5

= (x1 = 0, x2 = 0, x3 = 0, x4 = 1, x5 = 1, x6 = 0).

33

Core Exercises

1. Which of the following statements are true? Explain.

a. {16, 128, 256} ⊆ {1, 4, 16, 64, . . .}
b. c ∈ P({a, b, c, d, e})
c. |P({a, b, c, d, e})| = 32

d. 37 ̸∈ {5, 7, 10, 14, 19, . . .}

2. Consider the function f : N → P(N), where f(n) equals the set of prime factors of n, i.e.
those prime numbers that divide evenly into n. Compute, f(1), f(28), and f(2025).

3. Recall that the union
A1 ∪ A2 ∪ · · · ∪ Ak

of k sets A1, . . . , Ak is the set A where x ∈ A iff x is a member of Ai for at least one i ∈ {1, . . . , k}.
For example, if A1 = {6, 11, 12, 19}, A2 = {1, 2, 10, 12}, and A3 = {2, 3, 4, 14}, then

A1 ∪ A2 ∪ A3 = {1, 2, 3, 4, 6, 10, 11, 12, 14, 19}.

Now consider the Set Cover decision problem which is a triple (S,m, k), where S = {S1, . . . , Sn}
is a collection of n subsets, where Si ⊆ {1, . . . ,m}, for each i = 1, . . . , n, and a nonnegative
integer k. The problem is to decide if there are k subsets Si1 , . . . , Sik for which

Si1 ∪ · · · ∪ Sik = {1, . . . ,m}.

Provide a collection S of n = 9 subsets of {1, . . . , 15} for which (S,m = 15, k = 5) is a positive
instance of Set Cover, but (S,m = 15, k = 4) is a negative instance.

4. Find a satisfying assignment for the set of clauses

C = {(x1, x2), (x3, x4), (x3, x5), (x2, x5), (x2, x3), (x1, x4), (x1, x5), (x2, x5)}.

5. Given 2SAT instance C, if GC has path P = x2, x3, x5, x1, x7, then provide P .

6. Given 2SAT instance C, if GC has the inconsistent cycle C = x3, x4, x5, x1, x4, x2, x3, then
provide the subset C ′ ⊆ C of clauses that is associated with this cycle. Which clauses in C ′
prevent a satisfying assignment from assigning x4 = 0? Which clauses in C ′ prevent a satisfying
assignment from assigning x4 = 1? Conclude that C ′ (and C itself) is unsatisfiable.

7. For 2SAT instance C, suppose you make the query reachable(GC, x3, x3) to a Reachability

oracle who answers the query with “yes”. Assuming C is satisfiable, what can you say about a
satisfying assignment for C? Explain.

8. For some 2SAT instance C, is it possible to know with certainty whether or not C is satisfiable by
making exactly one query to a Reachability oracle and assuming no other knowledge about
C, including its size? Defend your answer.

34

9. Draw the implication graph for the following set of binary clauses.

(x2, x3), (x2, x4), (x1, x3), (x2, x3), (x1, x4), (x1, x4), (x1, x2).

Perform the Improved 2SAT Algorithm to determine a satisfying assignment for this set of
clauses. Hint: remember that the first literal tested should be x1, followed by x1 if necessary.

10. Repeat the previous problem, but now add the additional clause (x2, x3). Verify that there is
now an inconsistent cycle in the implication graph by performing the Improved 2SAT algorithm
and witnessing a variable xi for which both Rxi

and Rxi
are inconsistent. Follow the hint from

Exercise 9.

11. Draw the implication graph for the following instance of 2SAT.

C = {(x2, x4), (x2, x5), (x4, x6), (x2, x4), (x5, x6), (x1, x3), (x1, x3), (x3, x5)}.

Perform the Improved 2SAT algorithm to determine a satisfying assignment for this set of
clauses. Follow the hint described in Exercise 9. Another hint: the final satisfying assignment
should equal the union of two different consistent reachability sets.

12. In the 2SAT algorithm, suppose the oracle answers yes to reachable(GC, x3, x3), but no to
reachable(GC, x3, x3). Then if C is a unique satisfying assignment α, then what can you say
about α?

35

Additional Exercises

A. For the Reachability algorithm, use math induction to prove that any vertex x that gets
marked is reachable from u. Hint: assign an index to each marked vertex that represents the
distance of that vertex from u. In particular, assign u index 0. Then if vertex w has assigned
index i and (w, x) is the edge responsible for the marking of x, then assign x index i + 1.
Perform the induction on the index i assigned to vertex x.

B. For the directed graph G = (V,E), where

V = {a, b, c, d, e, f, g, h, i, j, k}

and the edges are given by

E = {(a, b), (a, c), (b, c), (b, d), (b, e), (b, g), (c, g), (c, f),

(d, f), (f, g), (f, h), (g, h), (i, j), (i, k), (j, k)},

use the Reachability Algorithm to determine if vertex k is reachable from vertex a. Show the
contents of the FIFO queue Q at each stage of the algorithm.

36

Solutions to Core Exercises

1. a) is false since 128 is not a power of 4. b) is false since a member of P({a, b, c, d, e}) must be
a subset of {a, b, c, d, e}. But c is a member of that set, not a subset of the set. c) is true. d) is
true since, e.g., the next three numbers in the set are 25, 32, and 40, and so 37 is not a member
of this set.

2. f(1) = ∅ since 1 is not prime. f(28) = {2, 7}, and f(2025) = {3, 5}.

3. We have

S = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}, {13, 14, 15}, {1}, {2}, {3}, {4}}

satisfies the requirements. The union of the first five sets equals {1, . . . , 15} but the union of
any four of the subsets does not equal {1, . . . , 15}.

4. Satisfying assignment: α = (x1 = 0, x2 = 1, x3 = 1, x4 = 0, x5 = 1).

5. P = x7, x1, x5, x3, x2.

6. Using the fact that P → Q is logically equivalent to P ∨Q, we have

C ′ = {(x3, x4), (x4, x5), (x5, x1), (x1, x4), (x4, x2), (x2, x3)}.

If x4 = 0, then clauses
(x4, x5), (x5, x1), (x1, x4)

cannot all be satisifed. Indeed, if x4 = 0, then the first clause forces x5 = 1, which forces
the second clause to assign x1 = 1, which forces the third clause to assign x4 = 1, which is a
contradiction. Similarly, if x4 = 1, then clauses

(x4, x2), (x2, x3), (x3, x4)

cannot all be satisfied. Indeed, if x4 = 1, then the first clause forces x2 = 0, which forces
the second clause to assign x3 = 1, which forces the third clause to assign x4 = 0, which is
a contradiction. Thefore, any implication graph that contains such an inconsistent cycle as C
leads to the original 2SAT instance C being unsatisfiable.

7. The satisfying assignment must assign x3 = 0, since, based on the query answer, there is a path
from x3 to x3 which means the assumption that x3 = 1 leads to a contradiction.

8. No, two queries at a minimum are needed. For example, what is the most one can say if the
query reachable(GC, x3, x3) were answered “yes”? “no”?

9. The implication graph GC is shown below. The reachability set for l = x1 is R = {x1, x2, x3, x4}
and αR satisfies C

37

x1 x2 x3 x4

x1 x2 x3 x4

10. We have
Rx1 = Rx1 = {x1, x1, x2, x2, x3, x3, x4, x4},

are both inconsistent. Therefore, C is unsatisfiable.

11. First recursive case: Rx1 = {x1, x3}. Second recursive case:

Rx2 = {x2, x5, x6, x4, x2, x4, x6, x5}

is inconsistent. However, Rx2 = {x2, x4, x6, x5} is consistent. Satisfying assignment: α = (x1 =
1, x2 = 0, x3 = 1, x4 = 0, x5 = 0, x6 = 1).

12. α(x3) = 1, since Rx3 is consistent and Rx3 is inconsistent. Therefore, no satisfying assignment
can assign 0 to x3.

38

Solutions to Additional Exercises

A. Basis step. Suppose x is marked and has index 0. Then necessarily x = u and so x is reachable
from u.

Inductive step. Assume that for some i ≥ 0, any marked vertex w that has an assigned
index of i is reachable from u. Show that any marked vertex with assigned index i + 1 is also
reachable from u.

Proving the inductive step. Let x be a marked vertex that has been assigned index i + 1.
Let (w, x) be the edge responsible for the marking of x. Then w has assigned index i and by
the inductive assumption is reachable from u. But then x is also reachable from u via a path
from u to w, followed by traversing the edge (w, x).

B. Queue sequence: Q1 = {a}, Q2 = {b, c}, Q3 = {c, d, e, g}, Q4 = {d, e, g, f}, Q5 = {e, g, f},
Q6 = {g, f}, Q7 = {f, h}, Q8 = {h}, Q9 = ∅. Therefore, vertex k is not reachable from a since
it was never marked and added to Q.

39

